- #1
juantheron
- 247
- 1
If $a,b,c$ are the length of the sides of an scalene triangle, If the equation
$x^2+2(a+b+c)x+3\lambda\left(ab+bc+ca\right) = 0$ has real and distinct roots,
Then the value of $\lambda$ is given by
Options::
(a) $\displaystyle \lambda < \frac{4}{3}\;\;\;\;\; $ (b)$\displaystyle \frac{11}{3}< \lambda < \frac{17}{3}\;\;\;\;\;\;$ (c) $ \lambda \geq 1\;\;\;\;\;\;$ (d)$ \displaystyle \frac{11}{3}< \lambda < \frac{17}{3}$
My Try:: Given that $\triangle$ is scalene means $a+b>c$ and $b+c>a$ and $c+a>b$
and given equation has real and distinct roots, Then $D>0$
So $\displaystyle 4(a+b+c)^2-4\cdot 3 \lambda \left(ab+bc+ca\right)>0$
So $(a+b+c)^2 - 3\lambda \left(ab+bc+ca\right)>0\Rightarrow (a^2+b^2+c^2)-(3\lambda-2)\cdot (ab+bc+ca)>0$
So $\displaystyle (a^2+b^2+c^2)>(3\lambda-2)(ab+bc+ca)>0$
So $\displaystyle 3\lambda-2 < \frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow 3\lambda < \frac{(a+b+c)^2}{ab+bc+ca}$
Now How can I solve after that, Help me
Thanks
$x^2+2(a+b+c)x+3\lambda\left(ab+bc+ca\right) = 0$ has real and distinct roots,
Then the value of $\lambda$ is given by
Options::
(a) $\displaystyle \lambda < \frac{4}{3}\;\;\;\;\; $ (b)$\displaystyle \frac{11}{3}< \lambda < \frac{17}{3}\;\;\;\;\;\;$ (c) $ \lambda \geq 1\;\;\;\;\;\;$ (d)$ \displaystyle \frac{11}{3}< \lambda < \frac{17}{3}$
My Try:: Given that $\triangle$ is scalene means $a+b>c$ and $b+c>a$ and $c+a>b$
and given equation has real and distinct roots, Then $D>0$
So $\displaystyle 4(a+b+c)^2-4\cdot 3 \lambda \left(ab+bc+ca\right)>0$
So $(a+b+c)^2 - 3\lambda \left(ab+bc+ca\right)>0\Rightarrow (a^2+b^2+c^2)-(3\lambda-2)\cdot (ab+bc+ca)>0$
So $\displaystyle (a^2+b^2+c^2)>(3\lambda-2)(ab+bc+ca)>0$
So $\displaystyle 3\lambda-2 < \frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow 3\lambda < \frac{(a+b+c)^2}{ab+bc+ca}$
Now How can I solve after that, Help me
Thanks