MHB Vandomo's question at Yahoo Answers regarding the binomial theorem

AI Thread Summary
In the discussion, Vandomo seeks help with a binomial expansion problem involving the expression (2K + X)^n, where the coefficients of X^2 and X^3 are equal. The solution utilizes the binomial theorem to establish the relationship between the coefficients, leading to the equation n choose 2 multiplied by (2k) equaling n choose 3. By applying the definition of binomial coefficients and simplifying, the conclusion is reached that n equals 6K + 2. This proof effectively demonstrates the required relationship between n and K in the context of the binomial expansion.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Binomial Expansion - Can Someone Please Help?

In the binomial expansion ( 2K + X) ^n, where K is an constant and n is a +ve integer, the coefficient of X^ 2 is = to the coefficient of X ^3.

Prove that n = 6 K + 2

If someone could please help, I'd be grateful.

Thanks.
Vandomo

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Vandomo,

According to the binomial theorem, we may state:

$$(2k+x)^n=\sum_{j=0}^n\left[{n \choose j}(2k)^{n-j}x^j \right]$$

Now, if the coefficients of the terms containing $x^2$ and $x^3$ are equal, then this implies:

$${n \choose 2}(2k)^{n-2}={n \choose 3}(2k)^{n-3}$$

Divide through by $$(2k)^{n-3}$$ to get:

$${n \choose 2}(2k)={n \choose 3}$$

Use the definition $${n \choose r}\equiv\frac{n!}{r!(n-r)!}$$ to now write:

$$\frac{n(n-1)}{2}(2k)=\frac{n(n-1)(n-2)}{6}$$

Multiply through by $$\frac{6}{n(n-1)}$$ to obtain:

$$6k=n-2$$

Arrange as:

$$n=6k+2$$

Shown as desired.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top