- #1
MaxManus
- 277
- 1
Homework Statement
Assume a one way variance analysis model on the form:
[tex] Y_{ij} = \mu + \alpha_{i} + e_{ij} [/tex]
where [tex] e_{ij} [/tex] independent with expectation 0 and constant variance
[tex] z_{ijl} = \left\{ \begin{array}{rcl}
1 & \mbox{for}
& 1 \\ 0 & \mbox{else}
\end{array}\right [/tex]
show that:
a)
[tex] Y_{ij} = \mu \sum_{l=1}^I \alpha_l z_{ijl} + e_{ij} [/tex]
and why this can bee seen as a linear regression
b) and why it is possible reduce it to
[tex] Y_{ij} = \mu \sum_{l=1}^{I-1} \alpha_l z_{ijl} + e_{ij} [/tex]
The last [tex] \alpha [/tex] is removed
The Attempt at a Solution
a)
[tex] Y_{ij} = \mu + \sum_{l=1}^I \alpha_l z_{ijl} + e_{ij} =\mu \alpha_1 z_{1j1} + \alpha_2 z_{ 2j2} + ... + \alpha_I z_{IjI} + e_{ij}[/tex]
Which is on the same form as a multiple linear regression
[tex] \mu = B_0 [/tex]
[tex] \alpha_l = B_l [tex]
[tex] z_{1j1} = x_{i1} [/tex]
so
[tex] Y_{ij} = B_0 + B_1 x_i1 + ... + B_I x_{iI} + e_{ij} [/tex]
which is on the form of a multiple regression
b) Don't know