I Variant of Baker-Campbell-Hausdorff Formula

AI Thread Summary
The discussion centers on the challenge of simplifying the expression e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}, where X, Y, and Z are non-commuting matrices. The original poster seeks a closed form for this expression but struggles with the complexity of nested operators after applying the Baker-Campbell-Hausdorff (BCH) identity. Responses highlight the difficulty in manipulating the terms due to the lack of control over how the matrices commute with Z, suggesting that the problem may not have a straightforward solution. One suggestion involves exploring nilpotent matrices to identify potential patterns. Overall, the consensus is that simplifying the expression is highly complex due to the properties of the matrices involved.
thatboi
Messages
130
Reaction score
20
TL;DR Summary
I want to evaluate ##e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}##
Hi all,
I was wondering if there was a clean/closed form version of the following expression: $$e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}$$
where ##X,Y,Z## are matrices that don't commute with each other. I know of the BCH identity ##e^{X}Ye^{-X} = Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + ...##
and I have used the identity to expand each term in my expression, but I cannot see a good way of cleaning up the result, I'm just left with a bunch of nested operators.
Any help would be appreciated, thanks!
 
Mathematics news on Phys.org
thatboi said:
TL;DR Summary: I want to evaluate ##e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}##

Hi all,
I was wondering if there was a clean/closed form version of the following expression: $$e^{X+Y}Ze^{-(X+Y)} - e^{Y}e^{X}Ze^{-X}e^{-Y}$$
where ##X,Y,Z## are matrices that don't commute with each other. I know of the BCH identity ##e^{X}Ye^{-X} = Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + ...##
and I have used the identity to expand each term in my expression, but I cannot see a good way of cleaning up the result, I'm just left with a bunch of nested operators.
Any help would be appreciated, thanks!
No way. What you are basically asking for is how to move the garbage on the left through ##Z## in order to annihilate the garbage on the right. Since you allow anything to happen by changing the sides of ##Z##, there is no way to make predictions.
 
fresh_42 said:
No way. What you are basically asking for is how to move the garbage on the left through ##Z## in order to annihilate the garbage on the right. Since you allow anything to happen by changing the sides of ##Z##, there is no way to make predictions.
Could you elaborate on what you mean by "Since you allow anything to happen by changing the sides of ##Z## "?
 
thatboi said:
Could you elaborate on what you mean by "Since you allow anything to happen by changing the sides of ##Z## "?
You have certain combined expressions in ##X## and ##Y## on the left and no control over how they commutate with ##Z##. ##e^X## and ##Z## aren't even in the same space.

I would approach this problem with nilpotent matrices of low degree, say the three-dimensional Heisenberg algebra for instance. Then with matrices of a bit increased degree of nilpotency. Maybe you can find a pattern. I will see if I can find something in the books.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top