- #1
JamesGoh
- 143
- 0
Homework Statement
Using the variation of parameters method, find the general solution of
[itex]x^{2}y" - 4xy' + 6y= x^{4}sin(x)[/itex]
Homework Equations
[itex]y_{P}=v_{1}(x)y_{1}(x) + v_{2}(x)y_{2}(x)[/itex]
[itex]v_{1}(x)'y_{1}(x) + v_{2}'(x)y_{2}(x)=0[/itex]
[itex]v_{1}(x)'y_{1}(x)' + v_{2}'(x)y_{2}(x)'=x^{4}sin(x)[/itex]
yp is the particular solution, v1,v2, y1 and y2 are nominal functions of x
The Attempt at a Solution
see pdfs below
The tutor's answer is [itex]y=Ax^{2}+Bx^{3}-x^{2}sin(x)[/itex]
Im not sure if I am using the method correctly, please feel free to point me in the right direction