A Variation of the kinetic term in scalar field theory

Baela
Messages
17
Reaction score
2
Varying ##\partial_\lambda\phi\,\partial^\lambda\phi## wrt the metric tensor ##g_{\mu\nu}## in two different ways gives me different results. Obviously I'm doing something wrong. Where am I going wrong?

Method 1: \begin{equation}
(\delta g_{\mu\nu})\,\partial^\mu\phi\,\partial^\nu\phi
\end{equation}

Method 2: \begin{align}&\quad\,\, (\delta g^{\mu\nu})\,\partial_\mu\phi\,\partial_\nu\phi \nonumber \\
&=(-g^{\mu\rho}g^{\nu\sigma}\delta g_{\rho\sigma})\,\partial_\mu\phi\,\partial_\nu\phi \quad (\because \delta g^{\mu\nu}=-g^{\mu\rho}g^{\nu\sigma}\delta g_{\rho\sigma} \,\,\text{as can be checked by varying the identity}\,\, g^{\mu\lambda}g_{\lambda\nu}=\delta^\mu_\nu) \nonumber\\
&=-(\delta g_{\rho\sigma})\,\partial^\rho\phi\,\partial^\sigma\phi
\end{align}
The second result differs from the first one by a minus sign. What's going wrong?
 
Last edited:
Physics news on Phys.org
In Method 1 you are missing the variations of the metric inside the definitions ##\partial^\mu \phi = g^{\mu\nu}\partial_\nu \phi##.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top