Variational symmetries for the Emden-Fowler equation

In summary, the paper explores the concept of variational symmetries in the context of the Emden-Fowler equation, which is a type of nonlinear ordinary differential equation often encountered in astrophysics and thermodynamics. The authors derive variational symmetries using Noether's theorem, highlighting their significance in identifying conserved quantities and simplifying the solution processes. The study emphasizes the potential of these symmetries to facilitate analytical and numerical techniques for solving the Emden-Fowler equation and provides examples illustrating the application of the derived symmetries.
  • #1
giraffe714
21
2
Homework Statement
The Emden-Fowler equation of astrophysics is ## y'' + \frac{2}{x}y' + y^5 = 0 ## which arises as the Euler-Lagrange equation to the functional ## J(y) = \int_{x_0)^{x_1} \frac{x^2}{2}(y'^2-\frac{1}{3}y^6) dx ##. Find the infinitesimal generators that lead to a variational symmetry for this functional and establish the conservation law $$ x^2(y'y + 2x(y'^2+y^5)) = const. $$
Relevant Equations
$$ \xi \frac{\partial f}{\partial x} + \eta \frac{\partial f}{\partial y} + (\eta' - y'\xi')\frac{\partial f}{\partial y'} + \xi' f = 0 $$ where $$ \eta' = \frac{\partial \eta}{\partial x} + \frac{\partial \eta}{\partial y} y' $$ and $$ \xi' = \frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial y} y' $$, Noether's theorem $$ \eta \frac{\partial f}{\partial y'} + \xi (f - \frac{\partial f}{\partial y'}y') = const. $$
So firstly I calculated the partial derivatives of f to be:
$$ \frac{\partial f}{\partial x} = \frac{2x}{2} (y'^2 - \frac{1}{3} y^6) + \frac{x^2}{2} (2y'y'' - 2y^5y') = xy'^2 - \frac{1}{3} y^6 + x^2y'(y'' - y^5) $$
$$ \frac{\partial f}{\partial y} = \frac{x^2}{2}*\frac{1}{3}*6y^5 = x^2y^5 $$
$$ \frac{\partial f}{\partial y'} = \frac{x^2}{2}*2y' = x^2y' $$

And then I plugged that into the first equation in the "Relevant equations" (not sure what it's called,) with ## \xi_x = \partial \xi / \partial x ## etc. for conciseness:

$$ \xi (xy'^2 - \frac{1}{3}y^6 + x^2y'(y'' - y^5)) - \eta x^2y^5 + (\eta_x + \eta_y y' - \xi_x y' - \xi_y y'^2)x^2 y' + \xi_x (\frac{x^2}{2}(y'^2-\frac{1}{3}y^6) ) + \xi_y (\frac{x^2}{2}(y'^2-\frac{1}{3}y^6)) y' = 0 $$

Which after expanding everything hopefully gives

$$ \xi xy'^2 - \frac{1}{3} \xi y^6 + \xi x^2 y' (y'' - y^5) + \eta x^2 y^5 + \eta_x x^2 y' + \eta_y x^2 y'^2 - \xi_x x^2 y'^2 - \xi_y x^2 y'^3 + \xi_x \frac{x^2}{2} y'^2 - \xi_x \frac{x^2}{6} y^6 + \xi_y \frac{x^2}{2} y'^3 - \eta_y \frac{x^2}{6} y^6 y' = 0 $$

Upon regrouping with ## y'^2, y^6, y', y^5, y'^3, y^6y' ## (and this is probably where my mistake lies, but I don't know how to fix it) gives the equations

$$ \xi x + \eta_y x^2 - \eta_x x^2 + \eta_x \frac{x^2}{2} = 0 $$ (from ## y'^2 ##)
$$ -\frac{1}{3} \xi - \xi_x \frac{x^2}{6} = 0 $$ (from ## y^6 ##)
$$ \xi x^2 (y'' - y^5) + \eta_x x^2 = 0 $$ (from ## y' ##)
$$ \eta x^2 = 0 $$ (from ## y^5 ##)
$$ -\xi_y x^2 + \xi_y \frac{x^2}{2} = 0 $$ (from ## y'^3 ##)
$$ -\xi_y \frac{x^2}{6} = 0 $$ (from ## y^6y' ##)

But, the equation from ## y^5 ## implies that ## \eta = 0 ##, and plugging that into both the equation from ## y'^2 ## and ## y' ## implies ## \xi = 0 ##. This however can't be true since this problem has a conservation law by Noether's theorem in the problem statement. I guess what I'm not fully understanding in this problem is how to group the equations together. Is it just be ## y' ## and their powers? Is it also by ## y ##? What about combination terms like ## y^6y' ##? And if it's the former, what happens to the terms not involving ## y' ##?
 
Physics news on Phys.org
  • #2
giraffe714 said:
Homework Statement: The Emden-Fowler equation of astrophysics is ## y'' + \frac{2}{x}y' + y^5 = 0 ## which arises as the Euler-Lagrange equation to the functional ## J(y) = \int_{x_0)^{x_1} \frac{x^2}{2}(y'^2-\frac{1}{3}y^6) dx ##. Find the infinitesimal generators that lead to a variational symmetry for this functional and establish the conservation law $$ x^2(y'y + 2x(y'^2+y^5)) = const. $$
Please verify that your equation for ##J(y)## that fails to render is:$$J\left(y\right)=\intop_{x_{0}}^{x_{1}}\frac{x^{2}}{2}(y'^{2}-\frac{1}{3}y^{6})dx$$
 
  • #3
renormalize said:
Please verify that your equation for ##J(y)## that fails to render is:$$J\left(y\right)=\intop_{x_{0}}^{x_{1}}\frac{x^{2}}{2}(y'^{2}-\frac{1}{3}y^{6})dx$$
Oh, yes, that's correct, my apologies.
 
  • #4

FAQ: Variational symmetries for the Emden-Fowler equation

What is the Emden-Fowler equation?

The Emden-Fowler equation is a type of nonlinear ordinary differential equation often expressed in the form of \( y'' + p(x)y' + q(x)y^n = 0 \), where \( n \) is a real number and \( p(x) \) and \( q(x) \) are functions of the independent variable \( x \). It arises in various fields such as astrophysics, thermodynamics, and mathematical biology, particularly in the study of stellar structure and diffusion processes.

What are variational symmetries?

Variational symmetries are a specific type of symmetry associated with the variational principles of physics and mathematics. They are transformations that leave the action integral invariant, which implies that the equations of motion derived from the action remain unchanged under these transformations. Variational symmetries can help in finding conserved quantities and simplifying the analysis of differential equations.

How do variational symmetries apply to the Emden-Fowler equation?

Variational symmetries can be applied to the Emden-Fowler equation to identify invariant solutions and conserved quantities. By finding the variational symmetries of the equation, one can reduce the complexity of the problem and facilitate the search for exact solutions. This method can also provide insights into the qualitative behavior of solutions and their stability.

What methods are used to find variational symmetries for the Emden-Fowler equation?

To find variational symmetries for the Emden-Fowler equation, methods such as Noether's theorem, the direct method of variational calculus, and the application of Lie group analysis are commonly employed. These techniques involve analyzing the structure of the differential equation, deriving the associated Lagrangian, and applying symmetry transformations to identify invariant properties and solutions.

What are the implications of discovering variational symmetries in the context of the Emden-Fowler equation?

Discovering variational symmetries in the context of the Emden-Fowler equation has significant implications for both theoretical and practical applications. It enhances the understanding of the underlying physical phenomena, aids in the classification of solutions, and provides tools for numerical simulations. Additionally, it can lead to the formulation of new models or modifications of existing ones in various scientific fields.

Back
Top