Varying an action wrt a symmetric and traceless tensor

In summary: In the E-L equations, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose.
  • #1
binbagsss
1,307
11
Consider a Lagrangian, #L#, which is a function of, as well as other fields #\psi_i#, a traceless and symmetric tensor denoted by #f^{uv}#, so that #L=L(f^{uv})#, the associated action is #\int L(f^{uv}, \psi_i)d^4x #.

To vary w.r.t #f^{uv}# , I write:

#f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)#, (1)

where #tr(f)=\eta_{uv}f^{uv}#, where #\eta_{uv}# is the metric associated to the space-time, and #f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})#.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose? thanks
 
Physics news on Phys.org
  • #2
binbagsss said:
Consider a Lagrangian, #L#, which is a function of, as well as other fields #\psi_i#, a traceless and symmetric tensor denoted by #f^{uv}#, so that #L=L(f^{uv})#, the associated action is #\int L(f^{uv}, \psi_i)d^4x #.

To vary w.r.t #f^{uv}# , I write:

#f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)#, (1)

where #tr(f)=\eta_{uv}f^{uv}#, where #\eta_{uv}# is the metric associated to the space-time, and #f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})#.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose?thanks
Use double-# for equations
https://www.physicsforums.com/help/latexhelp/
 
  • #3
Adjusted:

Consider a Lagrangian, L which is a function of, as well as other fields ##\psi_i##, a traceless and symmetric tensor denoted by ##f^{uv}##, so that ##L=L(f^{uv})##, the associated action is ##\int L(f^{uv}, \psi_i)d^4x ##.

To vary w.r.t ##f^{uv}## , I write:

##f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)##, (1)

where ##tr(f)=\eta_{uv}f^{uv}##, where ##\eta_{uv}## is the metric associated to the space-time, and ##f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})##.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose?

--edit-- maybe I'm stupid, but why does the double # not work?
 
  • #4
binbagsss said:
Consider a Lagrangian, #L#, which is a function of, as well as other fields #\psi_i#, a traceless and symmetric tensor denoted by #f^{uv}#, so that #L=L(f^{uv})#, the associated action is #\int L(f^{uv}, \psi_i)d^4x #.

To vary w.r.t #f^{uv}# , I write:

#f^{uv}=f_{symm}^{uv}-\frac{1}{d}\eta^{uv} tr(f)#, (1)

where #tr(f)=\eta_{uv}f^{uv}#, where #\eta_{uv}# is the metric associated to the space-time, and #f_{symm}^{uv}= (1/2) (f^{uv}+f^{vu})#.In (1), why is it to subtract the trace, I suspect adding the trace term is just as valid? (and perhaps there is a convention as to which consistent with the signature of the metric)? In the E-L equations, ofc, the variation w.r.t the deriviative of the field comes with the opposing sign, so it doesn't matter which is chose?thanks
I'm not sure what you do here, but you subtract the trace because the trace transforms to itself. Usually, one can break up a tensor into a symmetric traceless part, an antisymmetric part and the trace. But since you don't give any reference and your tex is hard to read, I'm merely guessing.
 

FAQ: Varying an action wrt a symmetric and traceless tensor

What is a symmetric and traceless tensor?

A symmetric and traceless tensor is a tensor that is equal to its transpose (symmetric) and has a trace (the sum of its diagonal elements) equal to zero (traceless). In the context of physics, these tensors often arise in the study of stress, strain, and other fields where conservation laws and symmetry play a crucial role.

Why do we vary an action with respect to a symmetric and traceless tensor?

Varying an action with respect to a symmetric and traceless tensor allows us to derive the equations of motion that respect the symmetries of the system. This process is essential in theories of gravity, fluid dynamics, and other fields where such tensors naturally appear, as it helps maintain the physical significance of the resulting equations.

What are the implications of varying an action with respect to a symmetric and traceless tensor?

The implications include obtaining field equations that incorporate the constraints imposed by symmetry and tracelessness. This can lead to simplified solutions and insights into the physical behavior of the system, such as the propagation of gravitational waves or the response of materials under stress.

How does the process of variation differ for symmetric and traceless tensors compared to other tensors?

The variation process for symmetric and traceless tensors must account for their specific properties. For symmetric tensors, the variation must preserve symmetry, while for traceless tensors, additional conditions are imposed to ensure that the resulting equations also remain traceless. This can complicate the variation process compared to more general tensors.

Can you provide an example of a physical system where varying an action with respect to a symmetric and traceless tensor is relevant?

An example is in general relativity, where the Einstein-Hilbert action is varied with respect to the metric tensor, which is symmetric. The resulting field equations describe the dynamics of spacetime and gravitational fields. In this context, the stress-energy tensor, which is also symmetric and traceless in the absence of anisotropic stresses, plays a crucial role in determining how matter and energy influence the curvature of spacetime.

Back
Top