- #36
cianfa72
- 2,452
- 255
Just as an example consider the following picture:
It is the affine 2-plane in a curvilinear coordinate system. The position vector field is still defined at each point as long as an origin A is chosen (since it depends on the definition of affine space alone). The components of the position vector field evaluated at point B or C depend on the coordinate/holonomic basis vectors associated to the curvilinear coordinate system at point B or C respectively.
It is the affine 2-plane in a curvilinear coordinate system. The position vector field is still defined at each point as long as an origin A is chosen (since it depends on the definition of affine space alone). The components of the position vector field evaluated at point B or C depend on the coordinate/holonomic basis vectors associated to the curvilinear coordinate system at point B or C respectively.
Last edited: