Vector addition, trying to find the angle

AI Thread Summary
The discussion centers on determining the angle Vag in vector addition, specifically questioning if it is 180° when the vector points left. It is clarified that while adding angles like 30° and 150° results in 180°, this does not relate to the angle formed by the resultant vector with the positive x-axis. The conversation emphasizes the importance of resolving vectors into components for accurate calculations, highlighting the foundational rules of vector addition. It is noted that simply combining angles without a valid reason does not contribute to solving the problem effectively. Understanding vector components and their relationships is crucial for finding the correct angle in vector addition scenarios.
Ineedhelpwithphysics
Messages
43
Reaction score
7
Homework Statement
IN picture
Relevant Equations
Addition of angles
Is angle Vag 180 since the vector is a straight line pointing left?
Also you can add 30 degrees with 150 which will be 180?

1697737028016.png
 
Physics news on Phys.org
Yes, the wind velocity vector forms an angle of 180° with the positive x-axis.
Adding 30 degrees to 150 degrees will always give you 180 degrees, but that is not the angle that the resultant you are looking for forms relative to the positive x-axis.

By the way, "Addition of angles" is not an equation.
 
  • Like
Likes MatinSAR and topsquark
Ineedhelpwithphysics said:
Also you can add 30 degrees with 150 which will be 180?
How is this relevant to solving the problem? Just because you can combine two numbers given in the problem to produce a third doesn't mean you should do it. You need to have a valid reason for doing so.

When it comes to vector addition, you have three basic building blocks. First, you can resolve a vector into components. If a vector ##\vec A## has magnitude ##A## and direction ##\theta## (relative to the +x axis), its components are ##A_x = A \cos\theta## and ##A_y = A \sin\theta##. Second, you can go the other way: if you know the components of a vector, its magnitude is ##A = \sqrt{A_x^2 + A_y^2}## and its direction satisfies ##\tan \theta = A_y/A_x##. Finally, you have the rule about how to actually add the vectors: if ##\vec C = \vec A + \vec B##, then ##C_x = A_x + B_x## and ##C_y = A_y + B_y##.

Using just those building blocks, can you come up with a way to use them to solve the problem at hand?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top