- #1
H2instinct
- 20
- 0
Homework Statement
Prove, by writing out in component form, that
[tex]\left(a \times b \right) \times c \equiv \left(a \bullet c\right) b - \left(b \bullet c\right) a[/tex]and deduce the result, [tex]\left(a \times b\right) \times c \neq a \times \left(b \times c\right)[/tex], that the operation of forming the vector product is non-associative.
The Attempt at a Solution
So I took the LHS and made it into component form:
[tex]LHS = \left(\left(\left(a_{z} \cdot b_{x} \cdot c_{z}\right) - \left(a_{x} \cdot b_{z} \cdot c_{z}\right)\right) - \left(\left(a_{x} \cdot b_{y} \cdot c_{y}\right) + \left(a_{y} \cdot b_{x} \cdot c_{y}\right)\right)\right) \hat{i} + \left(\left(\left(a_{x} \cdot b_{y} \cdot c_{x}\right) - \left(a_{y} \cdot b_{x} \cdot c_{x}\right)\right) - \left(\left(a_{y} \cdot b_{z} \cdot c_{z}\right) + \left(a_{z} \cdot b_{y} \cdot c_{z}\right)\right)\right) \hat{j}[/tex]
[tex]+ \left(\left(\left(a_{y} \cdot b_{z} \cdot c_{y}\right) - \left(a_{z} \cdot b_{y} \cdot c_{y}\right)\right) - \left(\left(a_{z} \cdot b_{x} \cdot c_{x}\right) + \left(a_{x} \cdot b_{z} \cdot c_{x}\right)\right)\right) \hat{k} [/tex]
[tex]RHS = \left(a_{x} \cdot b_{x} \cdot c_{x}\right) \hat{i} +\left(a_{y} \cdot b_{y} \cdot c_{y}\right) \hat{j} + \left(a_{z} \cdot b_{z} \cdot c_{z}\right) \hat{k} - \left(a_{x} \cdot b_{x} \cdot c_{x}\right) \hat{i} + \left(a_{y} \cdot b_{y} \cdot c_{y}\right) \hat{j} + \left(a_{z} \cdot b_{z} \cdot c_{z}\right) \hat{k}[/tex]
This doesn't seem very difficult to me, however, the algebra of it is all over the place. I believe I found the component form of each side properly, but I could have screwed up somewhere. I am definitely not getting the RHS = LHS, so I am either screwing up somewhere or am totally on the wrong path. Any help, either noticing what I have done wrong, or a fresh start is much appreciated. Thanks.
Last edited: