Vector calculus identities proof using suffix notation

In summary: The subscripts of ##~\vec a~## and ##~\vec b~## indicate the components of vectors ##~\vec a~## and ##~\vec b~## respectively. The asterisks and the exponents indicate the signs of the terms. The three terms on the right hand side of eq. (4) are, as follows: ##{~~~~~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_i (\partial_j a_k)~] =\begin{cases}\begin{align}& (-1) [~b
  • #1
U.Renko
57
1
I must become good at this ASAP.

Homework Statement



prove [itex] \vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \vec{b} \cdot(\vec\nabla\times\vec{a}) - \vec{a}\cdot(\vec\nabla\times\vec{b})[/itex]

Homework Equations


[itex] \vec a \times \vec b = \epsilon_{ijk}\vec a_j \vec b_k [/itex]
[itex] \vec\nabla\cdot = \Large\frac{\partial}{\partial x_i} [/itex]
summation over [itex] i [/itex]

The Attempt at a Solution



I don't know where to start. I'm sure it must involve some product rule.
but I'm not 100% sure whether or not [itex] \vec\nabla\cdot(\vec a \times \vec b) = (\vec b \times\vec\nabla\cdot\vec a) + (\vec a \times \vec\nabla\cdot\vec b) [/itex] (or something resembling it)

...
...Right now I have no decent book with me and searching on the internet has done more harm than good.

If that identity correct I might (probably) be able to do the rest.
 
Physics news on Phys.org
  • #2
Look at the types of quantities you are using in your attempt at a solution. What type of quantity is ##\nabla\cdot \vec{a}##? Does it make sense to take a cross product of a vector with this quantity?

As for how to prove the necessary assertion. You can always go back and use components! The brute force method is always doable (and it's not so hard for this problem).

For a more elegant method of proof, none immediately come to mind. Perhaps with some more thought, one can find a more elegant proof.
 
  • Like
Likes 1 person
  • #3
Matterwave said:
Look at the types of quantities you are using in your attempt at a solution. What type of quantity is ##\nabla\cdot \vec{a}##? Does it make sense to take a cross product of a vector with this quantity?

Nope. it doesn't make sense.
what was I thinking...
 
  • #4
U.Renko said:
Nope. it doesn't make sense.
what was I thinking...

Letting ##\partial_i \equiv \partial / \partial x_i##, we have
[tex] \vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \partial_i (\epsilon_{ijk} a_j b_k)
= \epsilon_{ijk} \partial_i (a_j b_k)[/tex]
(using the Einstein summation convention). Now use the differentiation product rule, and simplify.
 
  • #5
$$\vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \vec{b} \cdot(\vec\nabla\times\vec{a}) - \vec{a}\cdot(\vec\nabla\times\vec{b})=(\vec{b} \times\vec\nabla)\cdot\vec{a} - (\vec{a} \times\vec\nabla)\cdot\vec{b}=[\vec{b} \vec\nabla\vec{a}]-[\vec{a} \vec\nabla\vec{b}]$$
are several notations for the same thing

Though I personally like to include the parentheses some people do not. The justification for omitting the parentheses is that only one interpretation is possible. It is silly to make the nonsensical interpretation.

The problem you have is with parity of a permutation. Each switch in order changes the sign.
(123)=-(132)=(312)=-(213)=(231)=-(321)
we see that
$$\vec{b} \cdot(\vec\nabla\times\vec{a})$$
corresponds to (312) and thus has a positive sign
and
$$\vec{a}\cdot(\vec\nabla\times\vec{b})$$
corresponds to (213) and thus has a negative sign
 
  • #6
Show that $$(1){~~~~~~~~~~~~~~~~~~~~~~~~~}\vec \nabla\cdot(\vec a \times \vec b) = \vec b \cdot (\vec \nabla \times \vec a) - \vec a \cdot (\vec \nabla \times \vec b){~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}$$ Using suffix notation, we get for the left hand side of eq. (1) $$(2){~~~~~~~~~~~~~~~~~~~~~}[~\vec \nabla\cdot(\vec a \times \vec b)~]_i =\begin{cases} \begin{align}&~\partial_i (\vec a \times \vec b)_i = \partial_i (πœ€_{ijk} a_j b_k) = πœ€_{ijk} \partial_i (a_j b_k) \nonumber \\ & {~~~~~} πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~]~\dots\nonumber\end{align} \end{cases}$$For the right hand side of eq. (1), we obtain $$(3){~~~~~~~~~~~~}[~\vec b \cdot (\vec \nabla \times \vec a) - \vec a \cdot (\vec \nabla \times \vec b)~]_i =\begin{cases} \begin{align}& ~b_i ( πœ€_{ijk} \partial_j a_k) - a_i ( πœ€_{ijk} \partial_j b_k) \nonumber \\ &~πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] \nonumber\end{align} \end{cases}$$According to eqs. (1), (2), and (3) $$(4){~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] = πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~]{~~~~~~~~}$$ For the left hand side of eq. (4), we get after summing over ##k##
##{~~~~~~}(5){~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~πœ€_{ij1} [~b_1 (\partial_i a_j) + a_j ( \partial_i b_1)~]\nonumber \\ & + πœ€_{ij2} [~b_2 (\partial_i a_j) + a_j ( \partial_i b_2)~]\nonumber \\ & + πœ€_{ij3} [~b_3 (\partial_i a_j) + a_j ( \partial_i b_3)~] \nonumber\end{align}\end{cases}##
Now ... 1st line of (5) ##j\neq1##, ##j## = 2, 3 ... 2nd line ##j\neq2##, ##j## = 1, 3 ... 3rd line ##j\neq3##, ##j## = 1, 2
##{~~~~~~}(6){~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~πœ€_{i21} [~b_1 (\partial_i a_2) + a_2 ( \partial_i b_1)~] \nonumber \\ &{~~~~~}+ πœ€_{i31} [~b_1 (\partial_i a_3) + a_3 ( \partial_i b_1)\nonumber \\ & + πœ€_{i12} [~b_2 (\partial_i a_1) + a_1 ( \partial_i b_2)~] \nonumber \\ &{~~~~~} + πœ€_{i32} [~b_2 (\partial_i a_3) + a_3 ( \partial_i b_2)~] \nonumber \\ & + πœ€_{i13} [~b_3 (\partial_i a_1) + a_1 ( \partial_i b_3)~] \nonumber \\ &{~~~~~} + πœ€_{i23} [~b_3 (\partial_i a_2) + a_2 ( \partial_i b_3)~] \nonumber\end{align}\end{cases}##
Summing over ##i## as in the preceding, we find that
##{~~~~~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~πœ€_{321} [~b_1 (\partial_3 a_2) + a_2 ( \partial_3 b_1)~] \nonumber \\ &{~~~~~}+ πœ€_{231} [~b_1 (\partial_2 a_3) + a_3 ( \partial_2 b_1)\nonumber \\ & + πœ€_{312} [~b_2 (\partial_3 a_1) + a_1 ( \partial_3 b_2)~] \nonumber \\ &{~~~~~} + πœ€_{132} [~b_2 (\partial_1 a_3) + a_3 ( \partial_1 b_2)~] \nonumber \\ & + πœ€_{213} [~b_3 (\partial_2 a_1) + a_1 ( \partial_2 b_3)~] \nonumber \\ &{~~~~~} + πœ€_{123} [~b_3 (\partial_1 a_2) + a_2 ( \partial_1 b_3)~] \nonumber\end{align}\end{cases}##
Using the fact that ##~πœ€_{ijk} =\begin{cases}\begin{align} &~0~\text {if any index is equal to} \nonumber \\&~\text {any other index}~\dots\nonumber \\ &+1~\text {if}~i ,j, k~\text {form an} \nonumber \\ &~\text {even permutation (cylic}\nonumber \\ &~\text {permutation) of 1, 2, 3}~\dots\nonumber
\\ &-1~\text {if}~i ,j, k~\text {form an odd}\nonumber \\ &~\text {permutation of 1, 2, 3}~\dots\nonumber \end{align}\end{cases}##
##{~~~~~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~(-1) [~b_1 (\partial_3 a_2) + a_2 ( \partial_3 b_1)~] \nonumber \\ &{~~~~~}+ (+1) [~b_1 (\partial_2 a_3) + a_3 ( \partial_2 b_1)~] \nonumber \\ & + (+1) [~b_2 (\partial_3 a_1) + a_1 ( \partial_3 b_2)~] \nonumber \\ &{~~~~~} + (-1) [~b_2 (\partial_1 a_3) + a_3 ( \partial_1 b_2)~] \nonumber \\ & + (-1) [~b_3 (\partial_2 a_1) + a_1 ( \partial_2 b_3)~] \nonumber \\ &{~~~~~} +(+1) [~b_3 (\partial_1 a_2) + a_2 ( \partial_1 b_3)~] \nonumber\end{align}\end{cases}##
##{~~~~~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~ - b_1 (\partial_3 a_2)^* - a_2 ( \partial_3 b_1){\uparrow\uparrow} \nonumber \\ &{~~~~~}+ b_1 (\partial_2 a_3)^* + a_3 ( \partial_2 b_1){\uparrow\uparrow\uparrow}\nonumber \\ & + b_2 (\partial_3 a_1)^{**} + a_1 ( \partial_3 b_2)^{\uparrow} \nonumber \\ &{~~~~~} - b_2 (\partial_1 a_3)^{**} - a_3 ( \partial_1 b_2){\uparrow\uparrow\uparrow} \nonumber \\ & - b_3 (\partial_2 a_1)^{***} - a_1 ( \partial_2 b_3)^{\uparrow} \nonumber \\ &{~~~~~} + b_3 (\partial_1 a_2)^{***} + a_2 ( \partial_1 b_3)^{\uparrow\uparrow} \nonumber \end{align}\end{cases}##
##{~~~~~~}(7){~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~b_1 [~(\partial_2 a_3) - (\partial_3 a_2)~] \nonumber \\ &{~~~~~} + b_2 [~(\partial_3 a_1) - (\partial_1 a_3)~] \nonumber \\ & + b_3 [~(\partial_1 a_2) - (\partial_2 a_1)~] \nonumber \\ &{~~~~~}+ a_1 [~( \partial_3 b_2) - (\partial_2 b_3)~] \nonumber \\ & + a_2 [~( \partial_1 b_3) - ( \partial_3 b_1)~] \nonumber \\ &{~~~~~}+ a_3 [~( \partial_2b_1) - ( \partial_1 b_2)~] \nonumber\end{align}\end{cases}##
Going back to the right side of eq. (4), we get after summing over ##k##:
$$πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases}\begin{align}&~πœ€_{ij1} [~b_i (\partial_j a_1)~] - πœ€_{ij1} [~a_i (\partial_j b_1)~]\nonumber \\ &~+ πœ€_{ij2} [~b_i (\partial_j a_2)~] - πœ€_{ij2} [~a_i (\partial_j b_2)~]\nonumber \\ &~+ πœ€_{ij3} [~b_i (\partial_j a_3)~] - πœ€_{ij3} [~a_i (\partial_j b_3)~]\nonumber\end{align}\end{cases}$$ Summing over ##j##:
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases}\begin{align}&~πœ€_{i21} [~b_i (\partial_2 a_1)~] - πœ€_{i21} [~a_i (\partial_2 b_1)~]\nonumber \\ &~+ πœ€_{i31} [~b_i (\partial_3 a_1)~] - πœ€_{i31} [~a_i (\partial_3 b_1)~]\nonumber \\ &~+ πœ€_{i12} [~b_i (\partial_1 a_2)~] - πœ€_{i12} [~a_i (\partial_1 b_2)~]\nonumber \\ &~+ πœ€_{i32} [~b_i (\partial_3 a_2)~] - πœ€_{i32} [~a_i (\partial_3 b_2)~]\nonumber \\ &~+ πœ€_{i13} [~b_i (\partial_1 a_3)~] - πœ€_{i13} [~a_i (\partial_1 b_3)~]\nonumber \\ &~+ πœ€_{i23} [~b_i (\partial_2 a_3)~] - πœ€_{i23} [~a_i (\partial_2 b_3)~]\nonumber\end{align}\end{cases}##
Summing over ##i##:
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases}\begin{align}&~πœ€_{321} [~b_3 (\partial_2 a_1)~] - πœ€_{321} [~a_3 (\partial_2 b_1)~]\nonumber \\ &~+ πœ€_{231} [~b_2 (\partial_3 a_1)~] - πœ€_{231} [~a_2 (\partial_3 b_1)~]\nonumber \\ &~+ πœ€_{312} [~b_3 (\partial_1 a_2)~] - πœ€_{312} [~a_3 (\partial_1 b_2)~]\nonumber \\ &~+ πœ€_{132} [~b_1 (\partial_3 a_2)~] - πœ€_{132} [~a_1 (\partial_3 b_2)~]\nonumber \\ &~+ πœ€_{213} [~b_2 (\partial_1 a_3)~] - πœ€_{213} [~a_2 (\partial_1 b_3)~]\nonumber \\ &~+ πœ€_{123} [~b_1 (\partial_2 a_3)~] - πœ€_{123} [~a_1 (\partial_2 b_3)~]\nonumber\end{align}\end{cases}##
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases} \begin{align}&~(-1) b_3 (\partial_2 a_1) - (-1) a_3 (\partial_2 b_1) \nonumber \\ &~+ (+1) b_2 (\partial_3 a_1) - (+1) a_2 (\partial_3 b_1) \nonumber \\ &~+ (+1) b_3 (\partial_1 a_2) - (+1) a_3 (\partial_1 b_2) \nonumber \\ &~+ (-1) b_1 (\partial_3 a_2) - (-1) a_1 (\partial_3 b_2) \nonumber \\ &~+ (-1) b_2 (\partial_1 a_3) - (-1) a_2 (\partial_1 b_3) \nonumber \\ &~+ (+1) b_1 (\partial_2 a_3) - (+1) a_1 (\partial_2 b_3) \nonumber\end{align}\end{cases}##
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases} \begin{align}&~- b_3 (\partial_2 a_1)^{***} + a_3 (\partial_2 b_1)^{\uparrow\uparrow \uparrow} \nonumber \\ &~+ b_2 (\partial_3 a_1)^{**} - a_2 (\partial_3 b_1)^{\uparrow\uparrow} \nonumber \\ &~+ b_3 (\partial_1 a_2)^{***} - a_3 (\partial_1 b_2){\uparrow\uparrow \uparrow} \nonumber \\ &~- b_1 (\partial_3 a_2)^* + a_1 (\partial_3 b_2)^{\uparrow} \nonumber \\ &~- b_2 (\partial_1 a_3)^{**} + a_2 (\partial_1 b_3)^{\uparrow\uparrow} \nonumber \\ &~+ b_1 (\partial_2 a_3)^* - a_1 (\partial_2 b_3)^{\uparrow} \nonumber\end{align}\end{cases}##
##(8){~~~~~}πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases} \begin{align}&~b_1 [~(\partial_2 a_3)- (\partial_3 a_2)~] \nonumber \\
&~+ b_2 [~(\partial_3 a_1) - (\partial_1 a_3)~] \nonumber \\
&~+ b_3 [~(\partial_1 a_2) - (\partial_2 a_1)~] \nonumber \\
&~+ a_1 [~(\partial_3 b_2) - (\partial_2 b_3)~] \nonumber \\
&~+ a_2 [~(\partial_1 b_3) - (\partial_3 b_1)~] \nonumber \\ &~+ a_3 [~(\partial_2 b_1) - (\partial_1 b_2)~] \nonumber\end{align}\end{cases}##
Comparing eqs. (7) and (8), we find that $$πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] = πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~]$$ $$ \Rightarrow{~~~~~~~~~}\vec \nabla\cdot(\vec a \times \vec b) = \vec b \cdot (\vec \nabla \times \vec a) - \vec a \cdot (\vec \nabla \times \vec b)$$
 

FAQ: Vector calculus identities proof using suffix notation

1. What is vector calculus?

Vector calculus is a branch of mathematics that deals with the study of vector fields and their derivatives. It is used to solve problems in physics and engineering, such as calculating electric and magnetic fields.

2. What are suffix notations in vector calculus identities?

Suffix notation is a way of writing vector calculus identities using indices or subscripts. It is commonly used in physics and engineering to simplify and generalize equations.

3. What are some commonly used vector calculus identities?

Some commonly used vector calculus identities include the gradient, divergence, and curl identities. These identities are used to calculate changes in a vector field at a given point.

4. How do you prove vector calculus identities using suffix notation?

To prove vector calculus identities using suffix notation, you can use the Einstein summation convention, which states that repeated indices in an equation are implicitly summed over. This allows for a more compact and concise representation of the equations.

5. What are some applications of vector calculus identities?

Vector calculus identities have various applications in physics and engineering. They are used to solve problems involving electric and magnetic fields, fluid dynamics, and heat transfer, among others.

Similar threads

Replies
9
Views
1K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
9
Views
2K
Back
Top