- #1
Dustinsfl
- 2,281
- 5
Let the position vector of an arbitrary point $P(x_1x_2x_3)$ be $\mathbf{x} =x_i\hat{\mathbf{e}}_i$, and let $\mathbf{b} = b_i\hat{\mathbf{e}}_i$ be a constant vector.
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?