MHB Vector equation of a spherical surface

AI Thread Summary
The discussion revolves around deriving the vector equation of a spherical surface defined by the equation $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$. It establishes that this equation represents a sphere centered at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with a radius of $\frac{1}{2}b$. Participants clarify that the goal is to prove the distance from point $\mathbf{x}$ to the center $\frac{1}{2}\mathbf{b}$ equals the radius, leading to the expression $(\mathbf{x} - \frac{1}{2}\mathbf{b})^2 = (\frac{1}{2}b)^2$. The conversation emphasizes the importance of understanding the relationship between the vectors involved rather than equating them directly. The thread concludes with a focus on the mathematical proof required to validate the spherical surface equation.
Dustinsfl
Messages
2,217
Reaction score
5
Let the position vector of an arbitrary point $P(x_1x_2x_3)$ be $\mathbf{x} =x_i\hat{\mathbf{e}}_i$, and let $\mathbf{b} = b_i\hat{\mathbf{e}}_i$ be a constant vector.
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?
 
Mathematics news on Phys.org
dwsmith said:
Let the position vector of an arbitrary point $P(x_1x_2x_3)$ be $\mathbf{x} =x_i\hat{\mathbf{e}}_i$, and let $\mathbf{b} = b_i\hat{\mathbf{e}}_i$ be a constant vector.
Show that $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$ is the vector equation of a spherical surface having its center at $\mathbf{x} = \frac{1}{2}\mathbf{b}$ with radius of $\frac{1}{2}b$.
\begin{alignat}{3}
(x_i\hat{\mathbf{e}}_i - b_i\hat{\mathbf{e}}_i)\cdot x_i\hat{\mathbf{e}}_i & = & x_i^2-b_ix_i
\end{alignat}
How am I supposed to obtain that $b_i = x_i$?

You're not. That would mean $\mathbf b = \mathbf x$, but that is not what you need to prove.

You need to find the distance of $\mathbf x$ to $\frac 12 \mathbf b$ and proof that it is $\frac 12 b$.
That is, can you prove:
$(\mathbf x - \frac 12 \mathbf b)^2 \overset{?}{=} (\frac 12 b)^2$​
 
Last edited:
ILikeSerena said:
You're not. That would mean $\mathbf b = \mathbf x$, but that is not what you need to prove.

You need to find the distance of $\mathbf x$ to $\frac 12 \mathbf b$ and proof that it is $\frac 12 b$.
That is, can you prove:
$(\mathbf x - \frac 12 \mathbf b)^2 \overset{?}{=} (\frac 12 b)^2$​
$(\mathbf{x} -\frac{1}{2}\mathbf{b})^2 = \mathbf{x}\cdot\mathbf{x} - \mathbf{x}\cdot\mathbf{b} + \frac{1}{4}\mathbf{b}\cdot\mathbf{b}$
How do I go from here?
 
dwsmith said:
$(\mathbf{x} -\frac{1}{2}\mathbf{b})^2 = \mathbf{x}\cdot\mathbf{x} - \mathbf{x}\cdot\mathbf{b} + \frac{1}{4}\mathbf{b}\cdot\mathbf{b}$
How do I go from here?

What do you get from $(\mathbf{x} - \mathbf{b})\cdot\mathbf{x} = 0$?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top