- #1
skrat
- 748
- 8
Homework Statement
Calculate the flow of ##\vec{F}=(y^2,x^2,x^2y^2)## over surface ##S## defined as ##x^2+y^2+z^2=R^2## for ##z \geq 0## with normal pointed away from the origin.
Homework Equations
The Attempt at a Solution
The easiest was is probably with Gaussian law. I would be really happy if somebody could correct me if I am wrong and answer my question below:
Gaussian law: ##\int \int _O\vec{F}d\vec{S}+\int \int _S\vec{F}d\vec{S}=\int \int \int_{Body} \nabla\vec{F}dV## where I used notation ##O## for the circle.
Now ##\nabla\vec{F}= 0## therefore ##\int \int _O\vec{F}d\vec{S}+\int \int _S\vec{F}d\vec{S}=0## so all that remains is to calculate the floe through surface ##O##.
Using polar coordinates ##x=r \cos \varphi ## and ##y= r \sin \varphi## for ##z=0##. Than ##r_{\varphi } \times r_{r}=(0,0,-r)##
##\int \int _O\vec{F}d\vec{S}=-\int_{0}^{2\pi }\int_{0}^{R}r^{5} \cos^2 \varphi \sin^2 \varphi d\varphi dr##
That should be ##-\frac{\pi R^6}{96}##.
Question here: I am a bit confused weather I should use the other sign here ##r_{\varphi } \times r_{r}=(0,0,-r)## or is this the right one?