- #1
Dustinsfl
- 2,281
- 5
Is it possible to write \(\lvert\dot{\mathbf{r}}\rvert\lvert\ddot{\mathbf{r}} - \dot{\mathbf{r}}\cdot\ddot{\mathbf{r}}\rvert\) as \(\lvert\dot{\mathbf{r}}\rvert\lvert\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\rvert\)?
I want to show
$$
\lvert\left(\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\right) \times
\dot{\mathbf{r}}\rvert = \lvert\dot{\mathbf{r}}\rvert
\lvert\dot{\mathbf{r}}
\times\ddot{\mathbf{r}}\rvert
$$
I want to show
$$
\lvert\left(\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\right) \times
\dot{\mathbf{r}}\rvert = \lvert\dot{\mathbf{r}}\rvert
\lvert\dot{\mathbf{r}}
\times\ddot{\mathbf{r}}\rvert
$$