- #1
Dustinsfl
- 2,281
- 5
Prove that if $\mathbf{v}(t)$ is any vector that depends on time but which has a constant magnitude, then $\dot{\mathbf{v}}(t)$ is orthogonal to $\mathbf{v}(t)$.
Prove the converse.
We are working with finite dimensional vector spaces.
Let $\mathbf{v}(t) = \sum\limits_{i = 1}^{n}c_iv(t)_i$.
Then
$$
\lVert\mathbf{v}(t)\rVert = \sqrt{\sum\limits_{i = 1}^{n}c_i^2} = \alpha\in\mathbb{C}.
$$
How do I defined $\dot{\mathbf{v}}(t)$?
Prove the converse.
We are working with finite dimensional vector spaces.
Let $\mathbf{v}(t) = \sum\limits_{i = 1}^{n}c_iv(t)_i$.
Then
$$
\lVert\mathbf{v}(t)\rVert = \sqrt{\sum\limits_{i = 1}^{n}c_i^2} = \alpha\in\mathbb{C}.
$$
How do I defined $\dot{\mathbf{v}}(t)$?