- #1
borovecm
- 14
- 0
Vector proof that diagonals of rhomb split in ratio 1/2.
Hi. For my math homework I have to prove with vectors(we are currently learning that) that diagonals of any rhomb split in half in ratio 1/2.
A,B,C,D are end points of rhombus, and S is point where diagonales AC and BD meet.
My goal is to get this 2 equations:
[tex]\vec{AS}[/tex]=[tex]\stackrel{1}{2}[/tex]*[tex]\vec{AC}[/tex]
and
[tex]\vec{BS}[/tex]=[tex]\stackrel{1}{2}[/tex]*[tex]\vec{BD}[/tex]
condition of rhomb:
[tex]\vec{AB}[/tex]=[tex]\vec{DC}[/tex]
[tex]\vec{AD}[/tex]=[tex]\vec{BC}[/tex]
[tex]\vec{AB}[/tex]+[tex]\vec{BC}[/tex]+[tex]\vec{CD}[/tex]+[tex]\vec{DA}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AS}[/tex]+[tex]\vec{SD}[/tex]+[tex]\vec{DA}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]+[tex]\vec{CD}[/tex]+[tex]\vec{DA}[/tex]=[tex]\vec{0}[/tex]
_______________________________
[tex]\vec{AC}[/tex]+[tex]\vec{CD}[/tex]-[tex]\vec{AS}[/tex]-[tex]\vec{SD}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]-[tex]\vec{AS}[/tex]+[tex]\vec{BA}[/tex]-[tex]\vec{SD}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]+[tex]\vec{SA}[/tex]+[tex]\vec{DS}[/tex]+[tex]\vec{BA}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]+[tex]\vec{DS}[/tex]+[tex]\vec{SA}[/tex]+[tex]\vec{BA}[/tex]=[tex]\vec{0}[/tex]
and I don't know if I am on the right track and I wan't your opinion.
Homework Statement
Hi. For my math homework I have to prove with vectors(we are currently learning that) that diagonals of any rhomb split in half in ratio 1/2.
Homework Equations
A,B,C,D are end points of rhombus, and S is point where diagonales AC and BD meet.
My goal is to get this 2 equations:
[tex]\vec{AS}[/tex]=[tex]\stackrel{1}{2}[/tex]*[tex]\vec{AC}[/tex]
and
[tex]\vec{BS}[/tex]=[tex]\stackrel{1}{2}[/tex]*[tex]\vec{BD}[/tex]
condition of rhomb:
[tex]\vec{AB}[/tex]=[tex]\vec{DC}[/tex]
[tex]\vec{AD}[/tex]=[tex]\vec{BC}[/tex]
[tex]\vec{AB}[/tex]+[tex]\vec{BC}[/tex]+[tex]\vec{CD}[/tex]+[tex]\vec{DA}[/tex]=[tex]\vec{0}[/tex]
The Attempt at a Solution
[tex]\vec{AS}[/tex]+[tex]\vec{SD}[/tex]+[tex]\vec{DA}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]+[tex]\vec{CD}[/tex]+[tex]\vec{DA}[/tex]=[tex]\vec{0}[/tex]
_______________________________
[tex]\vec{AC}[/tex]+[tex]\vec{CD}[/tex]-[tex]\vec{AS}[/tex]-[tex]\vec{SD}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]-[tex]\vec{AS}[/tex]+[tex]\vec{BA}[/tex]-[tex]\vec{SD}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]+[tex]\vec{SA}[/tex]+[tex]\vec{DS}[/tex]+[tex]\vec{BA}[/tex]=[tex]\vec{0}[/tex]
[tex]\vec{AC}[/tex]+[tex]\vec{DS}[/tex]+[tex]\vec{SA}[/tex]+[tex]\vec{BA}[/tex]=[tex]\vec{0}[/tex]
and I don't know if I am on the right track and I wan't your opinion.
Attachments
Last edited: