- #1
eoghan
- 210
- 7
Hi! I'm studying the selection rules and the spectrum of one-electron atoms. In the textbook it is said: "It is convenient to introduce the spherical components of the vector [tex]\epsilon[/tex] which are given in terms of its Cartesian components by:
[tex]\epsilon_1=-\frac{1}{\sqrt2}(\epsilon_x+i\epsilon_y)[/tex]
[tex]\epsilon_0=\epsilon_z[/tex]
[tex]\epsilon_-1=-\frac{1}{\sqrt2}(\epsilon_x-i\epsilon_y)[/tex]
Can you please explain me these expressions?
I thought that
[tex]\epsilon_1=sin\theta cos\phi[/tex]
[tex]\epsilon_2=sin\theta sin\phi[/tex]
[tex]\epsilon_3=cos\theta[/tex]
so I can't understand the expressions given in the textbookP.s. [tex]\epsilon[/tex] is the polarization vector, so it's a unit vector
[tex]\epsilon_1=-\frac{1}{\sqrt2}(\epsilon_x+i\epsilon_y)[/tex]
[tex]\epsilon_0=\epsilon_z[/tex]
[tex]\epsilon_-1=-\frac{1}{\sqrt2}(\epsilon_x-i\epsilon_y)[/tex]
Can you please explain me these expressions?
I thought that
[tex]\epsilon_1=sin\theta cos\phi[/tex]
[tex]\epsilon_2=sin\theta sin\phi[/tex]
[tex]\epsilon_3=cos\theta[/tex]
so I can't understand the expressions given in the textbookP.s. [tex]\epsilon[/tex] is the polarization vector, so it's a unit vector