- #1
Ursa
- 11
- 2
- Homework Statement
- Vector ##\vec a## lies in the yz plane 63.0° from the positive direction of the y axis, has a positive z component, and has magnitude ##2.60 m##. Vector ##\vec b## lies in the xz plane 51.0° from the positive direction of the x axis, has a positive z component, and has magnitude ##1.30 m##. Find (a)##\vec a \cdot \vec b## , (b) the x-component of ##\vec a X \vec b## , (c) the y-component of ##\vec a X \vec b## , (d) the z-component of ##\vec a X \vec b## , and (e) the angle between ##\vec a## and ##\vec b## .
- Relevant Equations
- ##a_y =a sin \Phi##
##a_x =a cos \Phi##
##\vec a \cdot \vec b =ab cos \phi##
I tried to find the components of the vectors.
##a_y =2.60 sin 63.0 = 2.32## and assuming the z axis would behave the same as an x-axis ##a_z =2.60 cos 63.0 = 1.18##
##b_z =1.30 sin 51.0 = 1.01## making the same assumption ##b_x =1.3 cos 51.0 = 0.82## I now think I should have switched these two around, seeing the in the positive direction on the zx plane the z looks like the x and the x like the y.
but going further in this logic I attempted (a)
\begin{matrix}
0i & 2.32j & 1.18k\\
0.82i & 0j & 1.01k
\end{matrix}
##0*0.82 + 2.32*0 + 1.18*1.01= 1.19##
(b)
##2.32*1.01 - 1.18 *0 = 2.3##
(c)
##1.18 *0 - 0*1.01= 0##
(d)
##0 *0 - 2.31*0.82= 1.90##
(e)
##\vec a \cdot \vec b =ab cos \phi##
##1.19= 2.6*1.3 cos \phi##
##\phi = 69.4°##
##a_y =2.60 sin 63.0 = 2.32## and assuming the z axis would behave the same as an x-axis ##a_z =2.60 cos 63.0 = 1.18##
##b_z =1.30 sin 51.0 = 1.01## making the same assumption ##b_x =1.3 cos 51.0 = 0.82## I now think I should have switched these two around, seeing the in the positive direction on the zx plane the z looks like the x and the x like the y.
but going further in this logic I attempted (a)
\begin{matrix}
0i & 2.32j & 1.18k\\
0.82i & 0j & 1.01k
\end{matrix}
##0*0.82 + 2.32*0 + 1.18*1.01= 1.19##
(b)
##2.32*1.01 - 1.18 *0 = 2.3##
(c)
##1.18 *0 - 0*1.01= 0##
(d)
##0 *0 - 2.31*0.82= 1.90##
(e)
##\vec a \cdot \vec b =ab cos \phi##
##1.19= 2.6*1.3 cos \phi##
##\phi = 69.4°##