MHB Velleman problem 5(d) section 7.2

  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Section
AI Thread Summary
The discussion revolves around proving that the cardinality of the power set of positive integers is equivalent to the set of functions from positive integers to the power set of positive integers. The user demonstrates their approach by establishing that the power set of positive integers is similar to the set of functions from positive integers to a binary set. They further apply established cardinality equivalences to show that the function set remains consistent under transformations. The conclusion drawn is that the original statement holds true, and a participant confirms the validity of the proof. The proof effectively illustrates the relationships between these sets and their cardinalities.
issacnewton
Messages
1,035
Reaction score
37
Hi I have to prove

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \]

here is my attempt. I have proven that \( \mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}\{0,1\} \). Also I am going to use the fact that
if \( A\;\sim B \) and \( C\;\sim D \) then \( ^{A}C\;\sim ^{B}D \). So we get

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}(^{\mathbb{Z^+}} \{0,1\} ) \]

Also I have proven that for any sets A,B,C we have \( ^{(A\times B)}C\;\sim\; ^{A}( ^{B}C) \). So

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{(\mathbb{Z^+}\times \mathbb{Z^+} )} \{0,1\} \]

Since \( \mathbb{Z^+}\times \mathbb{Z^+}\;\sim \mathbb{Z^+} \) and \( \{0,1\}\;\sim \{0,1\} \) , we have

\[ ^{(\mathbb{Z^+}\times \mathbb{Z^+} )} \{0,1\}\;\sim\; ^{\mathbb{Z^+}} \{0,1\} \]

So it follows that
\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}} \{0,1\} \]

since \( \mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}\{0,1\} \) , we get

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \]

Is it ok ?

(Emo)
 
Physics news on Phys.org
Yes, I think this is fine.
 
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Back
Top