- #1
Kosta1234
- 46
- 1
- Homework Statement
- Velocity of charged particle
- Relevant Equations
- $$ \vec E \cdot \vec A = \rho (r) dV / \varepsilon _0 $$
Hi.
I will be glad if you can help me with a small problem.
I got a cylinder with a density $$ \rho (r) = b \cdot e^{\lambda r} $$, with radius $$ R $$.
If I let go a charge q < 0 from $$ R_0 $$ when $$ R_0 > R $$ , what will be the velocity that the charge will hit the axis of the cylinder.So I did the following:
I found the Electiric Field in space:
$$ \vec E = \frac {b}{\varepsilon _0 r} \cdot \frac {(\lambda r -1)\cdot e^{\lambda r} +1}{\lambda ^2} \hat r $$ when $$ r<R$$
$$ \vec E = \frac {b}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2} \hat r $$ when $$ r>R$$so that
$$ \vec F = \frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda r -1)\cdot e^{\lambda r} +1}{\lambda ^2} \hat r $$ when $$ r<R$$
$$ \vec F = \frac {qb}{\varepsilon _0 r} \cdot \frac {{{(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2} \hat r $$ when $$ r> R $$and now I want to use the second Newton's law:
$$ F = \frac {dv}{dt} $$
the problem is that I got an 'r' in the integral, can I solve the differential equation just like:
$$ \frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2})dt = dv $$
$$ (\frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2}) t dt = dx $$
$$ t^2 / 2 = \frac {dx}{(\frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2})} $$I'm a little bit confused because the force is changing along the distance
Thanks!. sorry that the latex didn't work in the end.. I've not idea what's wrong there
I will be glad if you can help me with a small problem.
I got a cylinder with a density $$ \rho (r) = b \cdot e^{\lambda r} $$, with radius $$ R $$.
If I let go a charge q < 0 from $$ R_0 $$ when $$ R_0 > R $$ , what will be the velocity that the charge will hit the axis of the cylinder.So I did the following:
I found the Electiric Field in space:
$$ \vec E = \frac {b}{\varepsilon _0 r} \cdot \frac {(\lambda r -1)\cdot e^{\lambda r} +1}{\lambda ^2} \hat r $$ when $$ r<R$$
$$ \vec E = \frac {b}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2} \hat r $$ when $$ r>R$$so that
$$ \vec F = \frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda r -1)\cdot e^{\lambda r} +1}{\lambda ^2} \hat r $$ when $$ r<R$$
$$ \vec F = \frac {qb}{\varepsilon _0 r} \cdot \frac {{{(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2} \hat r $$ when $$ r> R $$and now I want to use the second Newton's law:
$$ F = \frac {dv}{dt} $$
the problem is that I got an 'r' in the integral, can I solve the differential equation just like:
$$ \frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2})dt = dv $$
$$ (\frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2}) t dt = dx $$
$$ t^2 / 2 = \frac {dx}{(\frac {qb}{\varepsilon _0 r} \cdot \frac {(\lambda R -1)\cdot e^{\lambda R} +1}{\lambda ^2})} $$I'm a little bit confused because the force is changing along the distance
Thanks!. sorry that the latex didn't work in the end.. I've not idea what's wrong there