- #1
supernova88
- 13
- 1
Member advised to use the provided formatting template when starting a new thread in a homework forum.
Hi, I'm actually a teacher presently undergoing gravitation and circular motion with my students, and ran into a problem I forgot how to think through. I'm trying to explain Newton's cannonball thought process (shoot a cannonball fast enough off a mountain and it will circle the earth), and determine the velocity v from a particular height. I completely understand the rationale behind v=sqrt(G x mass of Earth / radius), but my students aren't ready for that *yet*. Instead I wanted to simplify things and pretend Earth is a long flat surface (I know it isn't) where its circumference is its distance which is d = 40,000,000 m. We would then find the velocity to land 1/4, 1/2, and all the way "around" earth.
Assuming a mountain is 10 km or 10,000 m tall, freefall should take roughly 44.7 seconds if g ~10 m/s^2, and rounding up we get 50 s (yes I know I'm taking a lot of shortcuts but at this level it's necessary). Anyway, the obvious answer is that for a cannonball to fall 10 km and land 40,000,000 m away it would need to travel v = 40,000,000/50 = 800,000 m/s, which equals nearly 2 million mi/h. This is way bigger than the known orbital velocity of things like the space station which are around 17,000 mi/h.
Even traveling half way around Earth (20,000,000 m) the velocity is basically 1 million mi/h.
I did have some luck when instead I looked at a quarter of the distance around Earth and thought of it like a triangle, where the vertical leg (say, facing north) is Earth's radius plus the mountain, and the horizontal leg (east) is Earth's radius. The height the cannonball falls therefore 6,370 km + 10 km, and freefall takes 1128.7 s. Landing 6,370,000 m away to the east, it should go - approximately - 5,643.7 m/s = 20,317.2 km/h = 12,700 mi/h. This isn't quite 17,000 mi/h, but a step in the right direction.
Anyway, that's a long winded way of asking how I can simply demonstrate a cannonball's velocity to land 1/4, 1/2, and all the way around the earth.
Thanks so much in advance.
Assuming a mountain is 10 km or 10,000 m tall, freefall should take roughly 44.7 seconds if g ~10 m/s^2, and rounding up we get 50 s (yes I know I'm taking a lot of shortcuts but at this level it's necessary). Anyway, the obvious answer is that for a cannonball to fall 10 km and land 40,000,000 m away it would need to travel v = 40,000,000/50 = 800,000 m/s, which equals nearly 2 million mi/h. This is way bigger than the known orbital velocity of things like the space station which are around 17,000 mi/h.
Even traveling half way around Earth (20,000,000 m) the velocity is basically 1 million mi/h.
I did have some luck when instead I looked at a quarter of the distance around Earth and thought of it like a triangle, where the vertical leg (say, facing north) is Earth's radius plus the mountain, and the horizontal leg (east) is Earth's radius. The height the cannonball falls therefore 6,370 km + 10 km, and freefall takes 1128.7 s. Landing 6,370,000 m away to the east, it should go - approximately - 5,643.7 m/s = 20,317.2 km/h = 12,700 mi/h. This isn't quite 17,000 mi/h, but a step in the right direction.
Anyway, that's a long winded way of asking how I can simply demonstrate a cannonball's velocity to land 1/4, 1/2, and all the way around the earth.
Thanks so much in advance.