- #1
mathfied
- 16
- 0
Hi. Having problems with this tricky Heat Equation Question. Managed to do part (a) and would appreciate verification that it's right.
But I can't manage to finish off the second part. I've started it off so please do advice me. Thanks a lot!
QUESTION:
-----------------------------------------
(a)
Show that the steady solution (which is independent of t) of the heat equation,
[itex]
\frac{{\partial ^2 \theta }}
{{\partial x^2 }} = \frac{1}
{{\alpha ^2 }}\frac{{\partial \theta }}
{{\partial t}}
[/itex] where [itex]\alpha[/itex] is a constant, on the interval:
[itex]
- L \leqslant x \leqslant L
[/itex] with conditions: [itex]\begin{gathered} \theta ( - L,t) = 0 \hfill \\
\theta (L,t) = T \hfill \\
\end{gathered} [/itex] is: [itex]\theta = \theta _0 (x) = \frac{{T(1 + \frac{x}
{L})}}
{2}[/itex]
(b)
Use methods of separation of variables to show that the unsteady solution for
[itex]\theta = (x,t)[/itex] with conditions: [itex]\theta ( - L) = T,{\text{ }}\theta (L) = 0,{\text{ }}\theta (x,0) = \theta _0 (x){\text{ is}}[/itex]:
[itex]
\theta (x,t) = \frac{T}
{2}\left[ {1 - \frac{x}
{L}} \right] - 2T\sum\limits_{n = 1}^\infty {\left[ {e^{ - \alpha ^2 n^2 \pi ^2 t/L^2 } \frac{{( - 1)^n \sin (n\pi x/L)}}
{{n\pi }}} \right]}[/itex]
My attempt:
Part (A)::
-----------------------
Using separation of variables:
[itex]\begin{gathered}
Let:\theta = (x,t) = X(x)T(t) \hfill \\
X(x) = Ax + B \hfill \\
T(t) = C \hfill \\
so:X(x)T(t) = (Ax + B)(C) \hfill \\
\end{gathered} [/itex]
now to use the conditions:
----------------------------------
[itex]\begin{gathered}
when:\theta ( - L,t) = 0, \hfill \\
A(x + L) + B = 0 \hfill \\
A(0) + B = 0,so:B = 0 \hfill \\
\end{gathered} [/itex]
[itex]\begin{gathered}
when:\theta (L,t) = T \hfill \\
A(x + L) + 0 = T \hfill \\
A(2L) = T \hfill \\
A = \frac{T}
{{2L}} \hfill \\
\end{gathered}[/itex]
[itex]\begin{gathered}
so: \hfill \\
\theta _0 (x) = \frac{T}
{{2L}}(x + L) = \frac{{T(1 + \frac{x}
{L})}}
{2} \hfill \\
\end{gathered}[/itex]
That's part (A) done. is my method to approach the final answer correct?
Part (B)::
-----------------------
I'm having problems here. Can't quite finish the question off. Please could you guide me out here. Thanks.
Using separation of variables:
[itex]Let:\theta = (x,t) = X(x)T(t)[/itex]
[itex]\begin{gathered}
unsteady - solution: - \rho ^2 < 0 \hfill \\
X(x) = Ae^{i\rho x} + Be^{ - ipx} = A\cos px + B\sin px \hfill \\
T(t) = Ce^{ - \alpha ^2 \rho ^2 t} \hfill \\
so:X(x)T(t) = (A\cos \rho x + B\sin \rho x)(Ce^{ - \alpha ^2 \rho ^2 t} ) \hfill \\
\end{gathered}[/itex]
now to use the conditions:
------------------------------
[itex]\begin{gathered}
\theta ( - L) = T:so: \hfill \\
(A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\
(A\cos \rho ( - L + L) + B\sin \rho ( - L + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\
(A\cos (0) + B\sin (0))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\
\left[ {A(e^{ - \alpha ^2 \rho ^2 t} )} \right] = T \hfill \\
\end{gathered}[/itex]
[itex]\begin{gathered}
\theta (L) = 0:so: \hfill \\
(A\cos (2\rho L) + B\sin (2\rho L))(e^{ - \alpha ^2 \rho ^2 t} ) = 0 \hfill \\
\end{gathered}[/itex]
[itex]
\begin{gathered}
\theta (x,0) = \theta _0 (x) = \frac{{T(1 + \frac{x}
{L})}}
{2}:so: \hfill \\
(A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 (0)} ) = \frac{{T(1 + \frac{x}
{L})}}
{2} \hfill \\
(A\cos \rho (x + L) + B\sin \rho (x + L))(1) = \frac{{T(1 + \frac{x}
{L})}}
{2} \hfill \\
\end{gathered}[/itex]
I'm stuck here. Any ideas on how to approach the final answer (as shown on the question)?
Thanks so much.
But I can't manage to finish off the second part. I've started it off so please do advice me. Thanks a lot!
QUESTION:
-----------------------------------------
(a)
Show that the steady solution (which is independent of t) of the heat equation,
[itex]
\frac{{\partial ^2 \theta }}
{{\partial x^2 }} = \frac{1}
{{\alpha ^2 }}\frac{{\partial \theta }}
{{\partial t}}
[/itex] where [itex]\alpha[/itex] is a constant, on the interval:
[itex]
- L \leqslant x \leqslant L
[/itex] with conditions: [itex]\begin{gathered} \theta ( - L,t) = 0 \hfill \\
\theta (L,t) = T \hfill \\
\end{gathered} [/itex] is: [itex]\theta = \theta _0 (x) = \frac{{T(1 + \frac{x}
{L})}}
{2}[/itex]
(b)
Use methods of separation of variables to show that the unsteady solution for
[itex]\theta = (x,t)[/itex] with conditions: [itex]\theta ( - L) = T,{\text{ }}\theta (L) = 0,{\text{ }}\theta (x,0) = \theta _0 (x){\text{ is}}[/itex]:
[itex]
\theta (x,t) = \frac{T}
{2}\left[ {1 - \frac{x}
{L}} \right] - 2T\sum\limits_{n = 1}^\infty {\left[ {e^{ - \alpha ^2 n^2 \pi ^2 t/L^2 } \frac{{( - 1)^n \sin (n\pi x/L)}}
{{n\pi }}} \right]}[/itex]
My attempt:
Part (A)::
-----------------------
Using separation of variables:
[itex]\begin{gathered}
Let:\theta = (x,t) = X(x)T(t) \hfill \\
X(x) = Ax + B \hfill \\
T(t) = C \hfill \\
so:X(x)T(t) = (Ax + B)(C) \hfill \\
\end{gathered} [/itex]
now to use the conditions:
----------------------------------
[itex]\begin{gathered}
when:\theta ( - L,t) = 0, \hfill \\
A(x + L) + B = 0 \hfill \\
A(0) + B = 0,so:B = 0 \hfill \\
\end{gathered} [/itex]
[itex]\begin{gathered}
when:\theta (L,t) = T \hfill \\
A(x + L) + 0 = T \hfill \\
A(2L) = T \hfill \\
A = \frac{T}
{{2L}} \hfill \\
\end{gathered}[/itex]
[itex]\begin{gathered}
so: \hfill \\
\theta _0 (x) = \frac{T}
{{2L}}(x + L) = \frac{{T(1 + \frac{x}
{L})}}
{2} \hfill \\
\end{gathered}[/itex]
That's part (A) done. is my method to approach the final answer correct?
Part (B)::
-----------------------
I'm having problems here. Can't quite finish the question off. Please could you guide me out here. Thanks.
Using separation of variables:
[itex]Let:\theta = (x,t) = X(x)T(t)[/itex]
[itex]\begin{gathered}
unsteady - solution: - \rho ^2 < 0 \hfill \\
X(x) = Ae^{i\rho x} + Be^{ - ipx} = A\cos px + B\sin px \hfill \\
T(t) = Ce^{ - \alpha ^2 \rho ^2 t} \hfill \\
so:X(x)T(t) = (A\cos \rho x + B\sin \rho x)(Ce^{ - \alpha ^2 \rho ^2 t} ) \hfill \\
\end{gathered}[/itex]
now to use the conditions:
------------------------------
[itex]\begin{gathered}
\theta ( - L) = T:so: \hfill \\
(A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\
(A\cos \rho ( - L + L) + B\sin \rho ( - L + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\
(A\cos (0) + B\sin (0))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\
\left[ {A(e^{ - \alpha ^2 \rho ^2 t} )} \right] = T \hfill \\
\end{gathered}[/itex]
[itex]\begin{gathered}
\theta (L) = 0:so: \hfill \\
(A\cos (2\rho L) + B\sin (2\rho L))(e^{ - \alpha ^2 \rho ^2 t} ) = 0 \hfill \\
\end{gathered}[/itex]
[itex]
\begin{gathered}
\theta (x,0) = \theta _0 (x) = \frac{{T(1 + \frac{x}
{L})}}
{2}:so: \hfill \\
(A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 (0)} ) = \frac{{T(1 + \frac{x}
{L})}}
{2} \hfill \\
(A\cos \rho (x + L) + B\sin \rho (x + L))(1) = \frac{{T(1 + \frac{x}
{L})}}
{2} \hfill \\
\end{gathered}[/itex]
I'm stuck here. Any ideas on how to approach the final answer (as shown on the question)?
Thanks so much.