- #1
Dustinsfl
- 2,281
- 5
For the system of equations
$$
\mathbf{x}' = \begin{pmatrix}
a\cos 2t & a\sin 2t\\
a\sin 2t & -a\cos 2t
\end{pmatrix}\mathbf{x},
$$
verify that under the change of variables:
$$
\mathbf{x} = \begin{pmatrix}
\cos 2t & \sin 2t\\
\sin 2t & -\cos 2t
\end{pmatrix}\mathbf{u},
$$
the equations for $u$ become a system with constant coefficients:
$$
\mathbf{u}' = \begin{pmatrix}
a & 1\\
-1 & -a
\end{pmatrix}\mathbf{u}.
$$Here is what I have
$$
\left[\begin{pmatrix}
\cos 2t & \sin 2t\\
\sin 2t & -\cos 2t
\end{pmatrix}\mathbf{u}\right]' = \begin{pmatrix} a & 0\\ 0 & a\end{pmatrix}\mathbf{u}
$$
What do I do about that left side? I don't see how I will get
$$
\mathbf{u}' = \begin{pmatrix}
a & 1\\
-1 & -a
\end{pmatrix}\mathbf{u}
$$
$$
\mathbf{x}' = \begin{pmatrix}
a\cos 2t & a\sin 2t\\
a\sin 2t & -a\cos 2t
\end{pmatrix}\mathbf{x},
$$
verify that under the change of variables:
$$
\mathbf{x} = \begin{pmatrix}
\cos 2t & \sin 2t\\
\sin 2t & -\cos 2t
\end{pmatrix}\mathbf{u},
$$
the equations for $u$ become a system with constant coefficients:
$$
\mathbf{u}' = \begin{pmatrix}
a & 1\\
-1 & -a
\end{pmatrix}\mathbf{u}.
$$Here is what I have
$$
\left[\begin{pmatrix}
\cos 2t & \sin 2t\\
\sin 2t & -\cos 2t
\end{pmatrix}\mathbf{u}\right]' = \begin{pmatrix} a & 0\\ 0 & a\end{pmatrix}\mathbf{u}
$$
What do I do about that left side? I don't see how I will get
$$
\mathbf{u}' = \begin{pmatrix}
a & 1\\
-1 & -a
\end{pmatrix}\mathbf{u}
$$