- #1
rsq_a
- 107
- 1
I wasn't quite sure how to do the second part of this question:
Given [tex]\textbf{f}(x,y,z) = (y/(x^2+y^2), -x/(x^2+y^2), 0)[/tex] where [tex](x,y) \neq (0,0)[/tex], verify that [tex]\nabla \times f = 0[/tex].
(A) Find a scalar field [tex]\phi[/tex] such that [tex]\textbf{f} = \nabla \phi[/tex] on [tex]R_1 = \{(x,y,z): y > 0\}[/tex].
(B) Show that there does NOT exist [tex]\psi[/tex] such that [tex]\textbf{f} = \nabla\psi[/tex] on [tex]R_2 = \{(x,y,z): (x,y) \neq (0,0)[/tex]For (A), I found [tex]\phi = [/tex] arctan(x) + arccot(x) - arctan(y/x).
I'm not sure how to do (B). In fact, I'm not even sure why it's true.
Given [tex]\textbf{f}(x,y,z) = (y/(x^2+y^2), -x/(x^2+y^2), 0)[/tex] where [tex](x,y) \neq (0,0)[/tex], verify that [tex]\nabla \times f = 0[/tex].
(A) Find a scalar field [tex]\phi[/tex] such that [tex]\textbf{f} = \nabla \phi[/tex] on [tex]R_1 = \{(x,y,z): y > 0\}[/tex].
(B) Show that there does NOT exist [tex]\psi[/tex] such that [tex]\textbf{f} = \nabla\psi[/tex] on [tex]R_2 = \{(x,y,z): (x,y) \neq (0,0)[/tex]For (A), I found [tex]\phi = [/tex] arctan(x) + arccot(x) - arctan(y/x).
I'm not sure how to do (B). In fact, I'm not even sure why it's true.