- #1
docnet
Gold Member
- 799
- 485
- Homework Statement
- Verify or refute the functions are solutions to a PDE
- Relevant Equations
- ##u(x)=\frac{1}{2}(x_1^2+x_2^2+...+x_n^2)##
Solution attempt:
We first write ##u(x)=\frac{1}{2}||x||^2## as ##u(x)=\frac{1}{2}(x_1^2+x_2^2+...+x_n^2)##
Operating on ##u(x)## with ##\Delta##, we have ##u(x)=\frac{1}{2}(2+2+...+2)## adding 2 to itself ##n## times.
So ##\Delta u(x)=n## and the function satisfies the first condition.
The outward unit normal field on the boundary of unit ball denoted ##\partial B_1(0)## is ##\nu=\left<x_1, x_2,...,x_n\right>##
The derivative of ##u## in the direction ##\nu## is given by ##D_{\nu}u=\frac{1}{2}(2x_1+2x_2+...+2x_n)=(x_1+x_2+...+x_n)##
So the function u does not satisfy the Neumann boundary conditions.
For the condition ##u=1## on the boundary of the unit ball, we consider the euclidian norm to be always equal to 1 by definition.
So the function ##u## satisfies the Dirichlet boundary conditions.