Verify that ## A(225)\geq 1 ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
For the number 225, the divisors are identified as 1, 3, 5, 9, 15, 25, 45, 75, and 225. The nonprincipal characters modulo 16 are evaluated, revealing that A(225) can be calculated as the sum of these characters over the divisors. The calculations confirm that A(225) equals 3, which satisfies the condition A(225) ≥ 1. The discussion highlights the importance of including all relevant calculations to avoid confusion in the final result.
Math100
Messages
816
Reaction score
229
Homework Statement
For each real-valued nonprincipal character ## \chi\pmod {16} ##, verify that ## A(225)\geq 1 ##.
Relevant Equations
Let ## \chi ## be any real-valued character mod ## k ## and let ## A(n)=\sum_{d\mid n}\chi(d) ##. Then ## A(n)\geq 0 ## for all ## n ##, and ## A(n)\geq 1 ## if ## n ## is a square.
Let ## n=225 ## and ## d ## be the divisors of ## n ##.
Then ## d=\left \{ 1, 3, 5, 9, 15, 25, 45, 75, 225 \right \} ##.
Note that the real-valued nonprincipal characters ## \chi\pmod {16} ## are ## \chi(1), \chi(7), \chi(9), \chi(15) ##.
Observe that ## \chi(1)=1, \chi(7)=\pm 1, \chi(9)=\pm 1, \chi(15)=\pm 1 ##.
Thus ## A(225)=\sum_{d\mid 225}\chi(d)=\chi(1)+\chi(9)+\chi(15)=1+1+1=3\geq 1 ##.
Therefore, ## A(225)\geq 1 ##.

\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}
 
Last edited:
Physics news on Phys.org
The real valued characters are ##\chi_1,\chi_2,\chi_5,\chi_6## where ##\chi_1## is the principal character. I think you left out a calculation step which is confusing here. It should be ...
\begin{align*}
A(225)&=\sum_{d|225}\chi_2(d)=2 [\chi_2(1)+\chi_2(3)+\chi_2(9)]+\chi_2(5)+\chi_2(13)+\chi_2(15)\\
&=2[1-1+\chi_2(9)]+\chi_2(5)+1-1\\
&=2\chi_2(9)+\chi_2(5)=3
\end{align*}
and the same for ##\chi_5## and ##\chi_6.##
 
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Back
Top