- #1
Math100
- 795
- 221
- Homework Statement
- For any integer ## a ##, verify that ## a^{5} ## and ## a ## have the same units digit.
- Relevant Equations
- None.
Proof:
Let ## a ## be any integer.
Applying the Fermat's theorem produces:
## a^{2}\equiv a\pmod {2}, a^{5}\equiv a\pmod {5} ##.
Observe that
\begin{align*}
&a^{4}\equiv a^{2}\pmod {2}\equiv a\pmod {2}\\
&a^{5}\equiv a^{2}\pmod {2}\equiv a\pmod {2}.\\
\end{align*}
This means ## a^{5}\equiv a\pmod {10} ##.
Suppose ## 0\leq k<10 ##.
Then ## a^{5}-k\equiv (a-k)\pmod {10} ##.
Thus ## a^{5}-k\equiv 0\pmod {10}\implies a-k\equiv 0\pmod {10} ##.
Therefore, ## a^{5} ## and ## a ## have the same units digit for any integer ## a ##.
Let ## a ## be any integer.
Applying the Fermat's theorem produces:
## a^{2}\equiv a\pmod {2}, a^{5}\equiv a\pmod {5} ##.
Observe that
\begin{align*}
&a^{4}\equiv a^{2}\pmod {2}\equiv a\pmod {2}\\
&a^{5}\equiv a^{2}\pmod {2}\equiv a\pmod {2}.\\
\end{align*}
This means ## a^{5}\equiv a\pmod {10} ##.
Suppose ## 0\leq k<10 ##.
Then ## a^{5}-k\equiv (a-k)\pmod {10} ##.
Thus ## a^{5}-k\equiv 0\pmod {10}\implies a-k\equiv 0\pmod {10} ##.
Therefore, ## a^{5} ## and ## a ## have the same units digit for any integer ## a ##.