- #1
Math100
- 797
- 221
- Homework Statement
- For each real-valued nonprincipal character ## \chi ## mod ## 16 ##, verify that ## L(1, \chi)\neq 0 ##.
- Relevant Equations
- ## L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n} ##
Note that ## L(1, \chi)\neq 0 ## when ## \chi ## is a nonprincipal character.
From a table of values for all the nonprincipal Dirichlet characters modulo ## 16 ##, we have that
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}
So ## L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi_{k}(n)}{n} ## with ## k\in\left \{ 2, 5, 6 \right \} ##.
Observe that
\begin{align*}
&\sum_{n=1}^{\infty}\frac{\chi_{2}(n)}{n}=\frac{\chi_{2}(1)}{1}+\frac{\chi_{2}(3)}{3}+\frac{\chi_{2}(5)}{5}+\frac{\chi_{2}(7)}{7}+\frac{\chi_{2}(9)}{9}+\frac{\chi_{2}(11)}{11}+\frac{\chi_{2}(13)}{13}+\frac{\chi_{2}(15)}{15}\\
&1+(-\frac{1}{3})+\frac{1}{5}+(-\frac{1}{7})+\frac{1}{9}+(-\frac{1}{11})+\frac{1}{13}+(-\frac{1}{15})=\frac{33976}{45045}\neq 0\\
&\sum_{n=1}^{\infty}\frac{\chi_{5}(n)}{n}=\frac{\chi_{5}(1)}{1}+\frac{\chi_{5}(3)}{3}+\frac{\chi_{5}(5)}{5}+\frac{\chi_{5}(7)}{7}+\frac{\chi_{5}(9)}{9}+\frac{\chi_{5}(11)}{11}+\frac{\chi_{5}(13)}{13}+\frac{\chi_{5}(15)}{15}\\
&1+\frac{1}{3}+(-\frac{1}{5})+(-\frac{1}{7})+\frac{1}{9}+\frac{1}{11}+(-\frac{1}{13})+(-\frac{1}{15})=\frac{47248}{45045}\neq 0\\
&\sum_{n=1}^{\infty}\frac{\chi_{6}(n)}{n}=\frac{\chi_{6}(1)}{1}+\frac{\chi_{6}(3)}{3}+\frac{\chi_{6}(5)}{5}+\frac{\chi_{6}(7)}{7}+\frac{\chi_{6}(9)}{9}+\frac{\chi_{6}(11)}{11}+\frac{\chi_{6}(13)}{13}+\frac{\chi_{6}(15)}{15}\\
&1+(-\frac{1}{3})+(-\frac{1}{5})+\frac{1}{7}+\frac{1}{9}+(-\frac{1}{11})+(-\frac{1}{13})+\frac{1}{15}=\frac{27904}{45045}\neq 0.\\
\end{align*}
Thus
\begin{align*}
&L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi_{2}(n)}{n}+\sum_{n=1}^{\infty}\frac{\chi_{5}(n)}{n}+\sum_{n=1}^{\infty}\frac{\chi_{6}(n)}{n}\\
&=\frac{33976}{45045}+\frac{47248}{45045}+\frac{27904}{45045}\\
&=\frac{36376}{15015}\\
&\neq 0.\\
\end{align*}
Therefore, ## L(1, \chi)\neq 0 ## for each real-valued nonprincipal character ## \chi ## mod ## 16 ##.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}
So ## L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi_{k}(n)}{n} ## with ## k\in\left \{ 2, 5, 6 \right \} ##.
Observe that
\begin{align*}
&\sum_{n=1}^{\infty}\frac{\chi_{2}(n)}{n}=\frac{\chi_{2}(1)}{1}+\frac{\chi_{2}(3)}{3}+\frac{\chi_{2}(5)}{5}+\frac{\chi_{2}(7)}{7}+\frac{\chi_{2}(9)}{9}+\frac{\chi_{2}(11)}{11}+\frac{\chi_{2}(13)}{13}+\frac{\chi_{2}(15)}{15}\\
&1+(-\frac{1}{3})+\frac{1}{5}+(-\frac{1}{7})+\frac{1}{9}+(-\frac{1}{11})+\frac{1}{13}+(-\frac{1}{15})=\frac{33976}{45045}\neq 0\\
&\sum_{n=1}^{\infty}\frac{\chi_{5}(n)}{n}=\frac{\chi_{5}(1)}{1}+\frac{\chi_{5}(3)}{3}+\frac{\chi_{5}(5)}{5}+\frac{\chi_{5}(7)}{7}+\frac{\chi_{5}(9)}{9}+\frac{\chi_{5}(11)}{11}+\frac{\chi_{5}(13)}{13}+\frac{\chi_{5}(15)}{15}\\
&1+\frac{1}{3}+(-\frac{1}{5})+(-\frac{1}{7})+\frac{1}{9}+\frac{1}{11}+(-\frac{1}{13})+(-\frac{1}{15})=\frac{47248}{45045}\neq 0\\
&\sum_{n=1}^{\infty}\frac{\chi_{6}(n)}{n}=\frac{\chi_{6}(1)}{1}+\frac{\chi_{6}(3)}{3}+\frac{\chi_{6}(5)}{5}+\frac{\chi_{6}(7)}{7}+\frac{\chi_{6}(9)}{9}+\frac{\chi_{6}(11)}{11}+\frac{\chi_{6}(13)}{13}+\frac{\chi_{6}(15)}{15}\\
&1+(-\frac{1}{3})+(-\frac{1}{5})+\frac{1}{7}+\frac{1}{9}+(-\frac{1}{11})+(-\frac{1}{13})+\frac{1}{15}=\frac{27904}{45045}\neq 0.\\
\end{align*}
Thus
\begin{align*}
&L(1, \chi)=\sum_{n=1}^{\infty}\frac{\chi_{2}(n)}{n}+\sum_{n=1}^{\infty}\frac{\chi_{5}(n)}{n}+\sum_{n=1}^{\infty}\frac{\chi_{6}(n)}{n}\\
&=\frac{33976}{45045}+\frac{47248}{45045}+\frac{27904}{45045}\\
&=\frac{36376}{15015}\\
&\neq 0.\\
\end{align*}
Therefore, ## L(1, \chi)\neq 0 ## for each real-valued nonprincipal character ## \chi ## mod ## 16 ##.