- #1
Math100
- 796
- 221
- Homework Statement
- Given an integer ## N ##, let ## M ## be the integer formed by reversing the order of the digits of ## N ## (for example, if ## N=6923 ##, then ## M=3296 ##). Verify that ## N-M ## is divisible by ## 9 ##.
- Relevant Equations
- None.
Proof:
Suppose ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal
expansion of a positive integer ## N ##.
Let ## M=a_{0}10^{m}+\dotsb +a_{m-2}10^{2}+a_{m-1}10+a_{m} ##, where ## 0\leq a_{q}\leq 9 ##, be the
decimal expansion of a positive integer ## M ##.
Then ## N-M=(a_{m}-a_{0})10^{m}+\dotsb +(a_{2}-a_{m-2})10^{2}+(a_{1}-a_{m-1})10+(a_{0}-a_{m}) ##.
Observe that ## 10\equiv 1\pmod {9}\implies 10^{n}\equiv 1\pmod {9} ##.
This means ## 9\mid (10^{n}-1) ##.
Thus ## 9\mid (N-M) ##.
Therefore, ## N-M ## is divisible by ## 9 ##.
Suppose ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal
expansion of a positive integer ## N ##.
Let ## M=a_{0}10^{m}+\dotsb +a_{m-2}10^{2}+a_{m-1}10+a_{m} ##, where ## 0\leq a_{q}\leq 9 ##, be the
decimal expansion of a positive integer ## M ##.
Then ## N-M=(a_{m}-a_{0})10^{m}+\dotsb +(a_{2}-a_{m-2})10^{2}+(a_{1}-a_{m-1})10+(a_{0}-a_{m}) ##.
Observe that ## 10\equiv 1\pmod {9}\implies 10^{n}\equiv 1\pmod {9} ##.
This means ## 9\mid (10^{n}-1) ##.
Thus ## 9\mid (N-M) ##.
Therefore, ## N-M ## is divisible by ## 9 ##.