Verify the Rodrigues formula of the Legendre polynomials

Click For Summary
The discussion focuses on verifying the Rodrigues formula for Legendre polynomials by analyzing the relationship between two equations, specifically (6.79) and (6.70). Participants explore the differentiation of the function \( y = (w^2 - 1)^l \) and apply the Leibniz rule for product differentiation to simplify the expressions. Despite attempts to substitute and manipulate the terms, some participants express difficulty in demonstrating that the left-hand side of (6.70) equals zero. Ultimately, a successful solution is indicated, referencing a method found on the Wikipedia page for Legendre polynomials. The conversation highlights the complexity of proving the equality through careful differentiation and substitution.
Happiness
Messages
686
Reaction score
30
How does (6.79) satisfy (6.70)?

After substitution, I get

$$(1-w^2)\frac{d^{l+2}}{dw^{l+2}}(w^2-1)^l-2w\frac{d^{l+1}}{dw^{l+1}}(w^2-1)^l+l(l+1)\frac{d^{l}}{dw^{l}}(w^2-1)^l$$

Using product rule in reverse on the first two terms,
$$(1-w^2)\frac{d^{l+1}}{dw^{l+1}}(w^2-1)^l+l(l+1)\frac{d^{l}}{dw^{l}}(w^2-1)^l$$
$$(1-w^2)\frac{d^{l+1}}{dw^{l+1}}(w^2-1)^l-2w\frac{d^{l}}{dw^{l}}(w^2-1)^l+2w\frac{d^{l}}{dw^{l}}(w^2-1)^l+l(l+1)\frac{d^{l}}{dw^{l}}(w^2-1)^l$$

Using product rule in reverse on the first two terms,
$$(1-w^2)\frac{d^{l}}{dw^{l}}(w^2-1)^l+2w\frac{d^{l}}{dw^{l}}(w^2-1)^l+l(l+1)\frac{d^{l}}{dw^{l}}(w^2-1)^l$$
$$\big[(1+2w-w^2)+l(l+1)\big]\frac{d^l}{dw^l}(w^2-1)^l$$

How do we prove it is equal to 0?

Screen Shot 2016-01-12 at 12.38.59 am.png

Screen Shot 2016-01-12 at 12.39.29 am.png

Screen Shot 2016-01-12 at 12.40.08 am.png

Screen Shot 2016-01-12 at 12.40.26 am.png
 
Physics news on Phys.org
I think it can be easily solved with the help of Leibniz rule for the differentiation of a product of two functions
$$
\frac{d^n}{dx^n}(f(x)g(x)) = \sum_{k=0}^n C(n,k) \frac{d^{n-k}f}{dx^{n-k}} \frac{d^k g}{dx^n}
$$
In the terms which contain differentiation ##l+1## or ##l+2## times, differentiate the function 1 or 2 times first.
 
blue_leaf77 said:
I think it can be easily solved with the help of Leibniz rule for the differentiation of a product of two functions
$$
\frac{d^n}{dx^n}(f(x)g(x)) = \sum_{k=0}^n C(n,k) \frac{d^{n-k}f}{dx^{n-k}} \frac{d^k g}{dx^n}
$$
In the terms which contain differentiation ##l+1## or ##l+2## times, differentiate the function 1 or 2 times first.

I could't solve it.

Let ##y=(w^2-1)^l##.
##\frac{dy}{dw}=2l(w^2-1)^{l-1}w##
##\frac{d^2y}{dw^2}=2l(w^2-1)^{l-2}\big[2(l-1)w+w^2-1\big]##

##\begin{align}\frac{d^{l+1}y}{dw^{l+1}}&=\frac{d^{l}}{dw^{l}}2l(w^2-1)^{l-1}w\\&=2l\Big[w\frac{d^l}{dw^l}(w^2-1)^{l-1}+l\frac{d^{l-1}}{dw^{l-1}}(w^2-1)^{l-1}\Big]\end{align}##

##\begin{align}\frac{d^{l+2}y}{dw^{l+2}}&=\frac{d^{l}}{dw^{l}}2l(w^2-1)^{l-2}\big[2(l-1)w+w^2-1\big]\\&=4l(l-1)\Big[w\frac{d^l}{dw^l}(w^2-1)^{l-2}+l\frac{d^{l-1}}{dw^{l-1}}(w^2-1)^{l-2}\Big]+2l\Big[\frac{d^l}{dw^l}(w^2-1)^{l-1}\Big]\end{align}##

After substituting (2) and (4) into the LHS of (6.70), it is not clear how the terms cancel out to give 0.
 
Last edited:
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
6K
Replies
0
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K