- #1
FritoTaco
- 132
- 23
Homework Statement
Problem 1: [itex]csc(tan^{-1}\dfrac{x}{2})=\sqrt{\dfrac{x^{2}+4}{x}}[/itex]
Problem 2: [itex]\sqrt{\dfrac{1-sinx}{1+sinx}}=\dfrac{|cosx|}{1+sinx}[/itex]
Homework Equations
Quotient Identities
[itex]tan\theta=\dfrac{sin\theta}{cos\theta}[/itex]
[itex]cos\theta=\dfrac{cos\theta}{sin\theta}[/itex]
Pythagorean Identites
[itex]sin^{2}\theta+cos^{2}=1[/itex]
[itex]cot^{2}\theta+1=csc^{2}\theta[/itex]
[itex]tan^{2}+1=sec^{2}\theta[/itex]
Recirpocal Identites
[itex]sin\theta=\dfrac{1}{csc\theta}[/itex]
[itex]cos\theta=\dfrac{1}{sec\theta}[/itex]
[itex]tan\theta=\dfrac{1}{cot\theta}[/itex]
[itex]csc\theta=\dfrac{1}{sin\theta}[/itex]
[itex]sec\theta=\dfrac{1}{cos\theta}[/itex]
[itex]cot\theta=\dfrac{1}{tan\theta}[/itex]
Cofunction Identities (maybe useful?)
[itex]sin(\dfrac{\pi}{2}-\theta)=cos\theta[/itex]
[itex]cos(\dfrac{\pi}{2}-\theta)=sin\theta[/itex]
[itex]tan(\dfrac{\pi}{2}-\theta)=cot\theta[/itex]
[itex]csc(\dfrac{\pi}{2}-\theta)=sec\theta[/itex]
[itex]sec(\dfrac{\pi}{2}-\theta)=csc\theta[/itex]
[itex]cot(\dfrac{\pi}{2}-\theta)=tan\theta[/itex]
Note: [itex]\sqrt{x^{2}}=|x|[/itex]
The Attempt at a Solution
Problem 1: Any ideas on how to get started? I have no idea what to do with inverse tangent and that stupid x/2 and it makes me mad! I know I need some work for it to be a valid thread so here goes nothing.
[itex]csc(tan^{-1}\dfrac{x}{2})=\sqrt{\dfrac{x^{2}+4}{x}}[/itex]
Maybe manipulate the left side?
[itex]csc(cot\theta)[/itex]
...yup, I'm totally lost.
Problem 2:
[itex]\sqrt{\dfrac{1-sinx}{1+sinx}}=\dfrac{|cosx|}{1+sinx}[/itex]
I manipulated the left side
[itex]\dfrac{\sqrt{1-sinx}}{\sqrt{1+sinx}}\cdot\dfrac{\sqrt{1-sinx}}{\sqrt{1-sinx}}[/itex]
[itex]\dfrac{1-sinx}{\sqrt{(1+sinx)(1-sinx)}}[/itex]
[itex]\dfrac{1-sinx}{\sqrt{(1+sin^{2}x)}} <--\sqrt{x^{2}}=|x|[/itex]
[itex]\dfrac{1-sinx}{|cosx|}[/itex]
[itex]\dfrac{|cosx|}{1+sinx}[/itex] Am I allowed to just switch it around like that?
[itex]\dfrac{|cosx|}{1+sinx}[/itex] = [itex]\dfrac{|cosx|}{1+sinx}[/itex]