- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- verify this function is a solution of the heat equation
- Relevant Equations
- ##\partial_t u -\Delta u=0##
I spent hours looking at this and cannot figure out where the error is. I'm wondering if there is an error before the boxed expression.
@Orodruin and @PeroK may I ask for your assistance?Consider a solution ##u:[0,\infty)\times \mathbb{R}^n\rightarrow \mathbb{R}## of the heat equation, ie. ##\partial_t u-\Delta u=0##. For ##\kappa>0## and ##V\in \mathbb{R}^n## we define the Galilean boosts of ##u(t,x)## by $$u_\kappa=exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$
$$\Rightarrow exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot u(t,x-2t\kappa V)$$
To show ##u_\kappa## is again a solution of the heat equation, we operate on ##u_\kappa## with ##\partial_t## using the product and chain rules
$$\partial_t u_\kappa=\partial_t\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$
$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \partial_t\big[u(t,x-2t\kappa V)\big]$$
$$=\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_tu\big[(t,x-2t\kappa V)\big]$$
and operate on ##u_\kappa## with ##\Delta## using the product and chain rules
$$\Delta u_\kappa=\Delta\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
$$= \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \Delta\big[ u(t,x-2t\kappa V)\big]$$
and compute
$$\partial_t u_\kappa - \Delta u_\kappa$$
$$\Rightarrow \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$-\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_t\big[ u(t,x-2t\kappa V)\big]$$$$-exp(-<x-t\kappa V,\kappa V>)\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
The first two terms cancel and we have the resulting expression $$\Rightarrow exp(-<x-t\kappa V,\kappa V>)\Big[\partial_t \big[u (t,x-2t\kappa V)\big]-\Delta\big[ u(t,x-2t\kappa V)\big]\Big]$$
We conclude ##u_\kappa## satisfies the heat equation if the terms inside the parenthesis vanish to zero.
$$\partial_t[u(t,x-2t\kappa V)]=\partial_tu(t,x-2t\kappa V)\partial_tt+\partial_xu(t,x-2t\kappa V)\partial_t(x-2t\kappa V)$$$$=\partial_tu(t,x-2t\kappa V)\boxed{-2\kappa V\partial_xu(t,x-2t\kappa V)}$$
$$\Rightarrow \text{ the}\quad\partial_x\quad\text{term creates problems}$$
The ##\Delta## term
$$\partial_{x_i}[u(t,x-2t\kappa V)]=\partial_{x_i}u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}u(t,x-2t\kappa V)$$
$$\partial_{x_i}[\partial_{x_i}u(t,x-2t\kappa V)]=\partial_{x_i}^2u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}^2u(t,x-2t\kappa V)$$
sum over i
$$\Rightarrow \Delta u(t,x-2t\kappa V)$$
if the boxed term vanishes, we could conclude that by the heat equation
$$\partial_t u_\kappa -\Delta u_\kappa = 0$$
the Galilean boosts of ##u_\kappa## is also a solution of the heat equation.
@Orodruin and @PeroK may I ask for your assistance?Consider a solution ##u:[0,\infty)\times \mathbb{R}^n\rightarrow \mathbb{R}## of the heat equation, ie. ##\partial_t u-\Delta u=0##. For ##\kappa>0## and ##V\in \mathbb{R}^n## we define the Galilean boosts of ##u(t,x)## by $$u_\kappa=exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$
$$\Rightarrow exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot u(t,x-2t\kappa V)$$
To show ##u_\kappa## is again a solution of the heat equation, we operate on ##u_\kappa## with ##\partial_t## using the product and chain rules
$$\partial_t u_\kappa=\partial_t\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$
$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \partial_t\big[u(t,x-2t\kappa V)\big]$$
$$=\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_tu\big[(t,x-2t\kappa V)\big]$$
and operate on ##u_\kappa## with ##\Delta## using the product and chain rules
$$\Delta u_\kappa=\Delta\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
$$= \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \Delta\big[ u(t,x-2t\kappa V)\big]$$
and compute
$$\partial_t u_\kappa - \Delta u_\kappa$$
$$\Rightarrow \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$-\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_t\big[ u(t,x-2t\kappa V)\big]$$$$-exp(-<x-t\kappa V,\kappa V>)\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
The first two terms cancel and we have the resulting expression $$\Rightarrow exp(-<x-t\kappa V,\kappa V>)\Big[\partial_t \big[u (t,x-2t\kappa V)\big]-\Delta\big[ u(t,x-2t\kappa V)\big]\Big]$$
We conclude ##u_\kappa## satisfies the heat equation if the terms inside the parenthesis vanish to zero.
$$\partial_t[u(t,x-2t\kappa V)]=\partial_tu(t,x-2t\kappa V)\partial_tt+\partial_xu(t,x-2t\kappa V)\partial_t(x-2t\kappa V)$$$$=\partial_tu(t,x-2t\kappa V)\boxed{-2\kappa V\partial_xu(t,x-2t\kappa V)}$$
$$\Rightarrow \text{ the}\quad\partial_x\quad\text{term creates problems}$$
The ##\Delta## term
$$\partial_{x_i}[u(t,x-2t\kappa V)]=\partial_{x_i}u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}u(t,x-2t\kappa V)$$
$$\partial_{x_i}[\partial_{x_i}u(t,x-2t\kappa V)]=\partial_{x_i}^2u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}^2u(t,x-2t\kappa V)$$
sum over i
$$\Rightarrow \Delta u(t,x-2t\kappa V)$$
if the boxed term vanishes, we could conclude that by the heat equation
$$\partial_t u_\kappa -\Delta u_\kappa = 0$$
the Galilean boosts of ##u_\kappa## is also a solution of the heat equation.