- #1
murshid_islam
- 461
- 20
- TL;DR Summary
- Is my Integration ok?
I'm trying to compute ##\int_0^1 x^m \ln x \, \mathrm{d}x##. I'm wondering if the bit about the application of L'Hopital's rule was ok. Can anyone check?
Letting ##u = \ln x## and ##\mathrm{d}v = x^m##, we have ##\mathrm{d}u = \frac{1}{x}\mathrm{d}x ## and ##v = \frac{x^{m+1}}{m+1}##
##\int_0^1 x^m \ln(x) \, \mathrm{d}x##
##= \left. \frac{1}{m+1} x^{m+1} \ln(x) \right|_{0}^{1} - \int_{0}^{1} \frac{x^m}{m+1} \, \mathrm{d}x##
##= \frac{1}{m+1} \left(0 - \lim_{x \to 0} x^{m+1} \ln(x) \right) - \left. \frac{x^{m+1}}{(m+1)^2} \right|_{0}^{1}##
##= \frac{1}{m+1} \left(\lim_{x \to 0} x^{m+1} \ln\left(\frac{1}{x}\right) \right) - \frac{1}{(m+1)^2} ##
##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{\ln(1/x)}{1/x^{m+1}} \right) - \frac{1}{(m+1)^2} ##
##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{x (-1/x^2)}{-(m+1)x^{-m-2}} \right) - \frac{1}{(m+1)^2} ##
##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{x^{m+1}}{m+1} \right) - \frac{1}{(m+1)^2} ##
## = 0 - \frac{1}{(m+1)^2} ##
## = \frac{-1}{(m+1)^2} ##
Letting ##u = \ln x## and ##\mathrm{d}v = x^m##, we have ##\mathrm{d}u = \frac{1}{x}\mathrm{d}x ## and ##v = \frac{x^{m+1}}{m+1}##
##\int_0^1 x^m \ln(x) \, \mathrm{d}x##
##= \left. \frac{1}{m+1} x^{m+1} \ln(x) \right|_{0}^{1} - \int_{0}^{1} \frac{x^m}{m+1} \, \mathrm{d}x##
##= \frac{1}{m+1} \left(0 - \lim_{x \to 0} x^{m+1} \ln(x) \right) - \left. \frac{x^{m+1}}{(m+1)^2} \right|_{0}^{1}##
##= \frac{1}{m+1} \left(\lim_{x \to 0} x^{m+1} \ln\left(\frac{1}{x}\right) \right) - \frac{1}{(m+1)^2} ##
##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{\ln(1/x)}{1/x^{m+1}} \right) - \frac{1}{(m+1)^2} ##
##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{x (-1/x^2)}{-(m+1)x^{-m-2}} \right) - \frac{1}{(m+1)^2} ##
##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{x^{m+1}}{m+1} \right) - \frac{1}{(m+1)^2} ##
## = 0 - \frac{1}{(m+1)^2} ##
## = \frac{-1}{(m+1)^2} ##
Last edited: