- #1
redstone
- 26
- 0
Looking for a check on my tensor math to make sure I've done this correctly...
Where D equals the dimension of the metric -
Step 0: [tex]{{A}^{ab}}=\frac{1}{D}{{g}^{ab}}{{g}_{cd}}{{A}^{cd}}[/tex]
Step 1: [tex]{{g}_{ab}}{{A}^{ab}}={{g}_{ab}}\frac{1}{D}{{g}^{ab}}{{g}_{cd}}{{A}^{cd}} [/tex]
Step 2: [tex]{{g}_{ab}}{{A}^{ab}}=\frac{1}{D}{{g}_{ab}}{{g}^{ab}}{{g}_{cd}}{{A}^{cd}} [/tex]
Step 3: [tex]{{g}_{ab}}{{A}^{ab}}=\frac{1}{D}g_{a}^{a}{{g}_{cd}}{{A}^{cd}} [/tex]
Step 4: [tex]{{g}_{ab}}{{A}^{ab}}=\frac{1}{D}D{{g}_{cd}}{{A}^{cd}} [/tex]
Step 5: [tex]{{g}_{ab}}{{A}^{ab}}={{g}_{cd}}{{A}^{cd}} [/tex]
Step 6: [tex]{{g}_{ab}}{{A}^{ab}}={{g}_{ab}}{{A}^{ab}} [/tex]
So I know that the equation in step 0 is true for any tensor A, is that correct?
Where D equals the dimension of the metric -
Step 0: [tex]{{A}^{ab}}=\frac{1}{D}{{g}^{ab}}{{g}_{cd}}{{A}^{cd}}[/tex]
Step 1: [tex]{{g}_{ab}}{{A}^{ab}}={{g}_{ab}}\frac{1}{D}{{g}^{ab}}{{g}_{cd}}{{A}^{cd}} [/tex]
Step 2: [tex]{{g}_{ab}}{{A}^{ab}}=\frac{1}{D}{{g}_{ab}}{{g}^{ab}}{{g}_{cd}}{{A}^{cd}} [/tex]
Step 3: [tex]{{g}_{ab}}{{A}^{ab}}=\frac{1}{D}g_{a}^{a}{{g}_{cd}}{{A}^{cd}} [/tex]
Step 4: [tex]{{g}_{ab}}{{A}^{ab}}=\frac{1}{D}D{{g}_{cd}}{{A}^{cd}} [/tex]
Step 5: [tex]{{g}_{ab}}{{A}^{ab}}={{g}_{cd}}{{A}^{cd}} [/tex]
Step 6: [tex]{{g}_{ab}}{{A}^{ab}}={{g}_{ab}}{{A}^{ab}} [/tex]
So I know that the equation in step 0 is true for any tensor A, is that correct?