- #1
CaptainZappo
- 92
- 0
I am posing this question due to a statement made by my TA:
Suppose there is a spring pointed vertically upwards. Further, suppose that the spring is compressed a distance x so that it stores some potential energy. A mass is then placed on top of the spring. Assume all energy is conserved.
Here's the question: upon releasing the spring, what is the kinetic energy of the ball as it passes the equilibrium position of the spring? Is it equal in magnitude to (1/2)kx^2 where x is the amount the spring is compressed, or is it (1/2)kx^2 - mgx?
My TA said the former is correct, while I cannot figure out why it is not the latter. My reasoning: as the ball is rising from its initial height (the point at which the spring is fully compressed) some of that energy is being converted to gravitational potential energy. The rest goes to kinetic energy.
Any insight will be greatly appreciated,
-Zachary Lindsey
Suppose there is a spring pointed vertically upwards. Further, suppose that the spring is compressed a distance x so that it stores some potential energy. A mass is then placed on top of the spring. Assume all energy is conserved.
Here's the question: upon releasing the spring, what is the kinetic energy of the ball as it passes the equilibrium position of the spring? Is it equal in magnitude to (1/2)kx^2 where x is the amount the spring is compressed, or is it (1/2)kx^2 - mgx?
My TA said the former is correct, while I cannot figure out why it is not the latter. My reasoning: as the ball is rising from its initial height (the point at which the spring is fully compressed) some of that energy is being converted to gravitational potential energy. The rest goes to kinetic energy.
Any insight will be greatly appreciated,
-Zachary Lindsey