Very hard ideal gas law problem

In summary, the temperature of the gas is raised until half the mercury spills out of the cylinder, and then the new temperature is found.
  • #1
NasuSama
326
3

Homework Statement



A cylinder of height H = 1.2 m high rests on a table. The bottom half of the cylinder is filled with an ideal gas; on top of that is a frictionless, movable disk of negligible mass and thickness. Above the disk, the top half of the cylinder is completely filled with liquid mercury, and the top is open to the air. Initially, the gas is at temperature [itex]T_{1}[/itex] = 319 K; air pressure is [itex]P_{0}[/itex] = 1.013 x 10^5 Pa, and the density of mercury is [itex]\rho_{Hg}[/itex] = 13600 kg/m3. Now the temperature of the gas is raised until one-half of the mercury spills out of the cylinder. Assume you can ignore the expansion of the mercury and the cylinder due to change in temperature, and evaporation of mercury is negligible. Find [itex]T_{2}[/itex], the new temperature of the system.

Homework Equations



→ Ideal Gas Law is the start.
→ [itex]P_{1} = P_{0} + \rho hg[/itex]

The Attempt at a Solution



I answered the question incorrectly by following this method..

[itex](P_{0} + \rho_{Hg}gh/2) * V_{1}/T_{1} = (P_{0} + \rho_{Hg}gh * 3/4) * V_{2} /T_{2}[/itex]
[itex](P_{0} + \rho_{Hg}gh/2) * A * h/2 /T_{1} = (P_{0} + \rho_{Hg}gh * 3/4) * A * 3h/4 /T_{2}[/itex]

I only considered the volume of the mercury on the top of the disk. I thought that the cylinder is filled with half mercury and half gas, so I included h/2. That is the height of the mercury in the cylinder. Then, since the temperature is raised until more than a half of the mercury is spilled out of the cylinder, I believe I include 3h/4. I solved for [itex]T_{2}[/itex], but I have the wrong answer.

Don't know what goes wrong here.
 
Physics news on Phys.org
  • #2
What is the depth of the mercury after half spills out? Is it 3/4 of h?
 
  • #3
TSny said:
What is the depth of the mercury after half spills out? Is it 3/4 of h?

Then, it's h/4, but wouldn't this mean that the temperature decreases? I checked that value already, and it seems invalid to me. The problem says that the temperature is supposed to increase.

Maybe, I should use the new formula to work out the calculation.
 
  • #4
Did you get an answer using TSny's advice? I just worked it out using your formula and got a positive answer.

What was the negative answer you got and maybe we can work out where you're going wrong?

If you got a T2 of 219K, then you need to remember that 0.25 + 0.75 = 1 - i.e. the height of the mercury column isn't the height of the gas column - the [itex]\rho_{Hg} g h[/itex], the h is the height of the mercury column exerting a pressure. Whereas the Volume is made up of h*A, where h is the height of the gas column.
 
Last edited:
  • #5
NasuSama said:
1. I answered the question incorrectly by following this method..

[itex](P_{0} + \rho_{Hg}gh/2) * V_{1}/T_{1} = (P_{0} + \rho_{Hg}gh * 3/4) * V_{2} /T_{2}[/itex]

Change "3/4' TO "1/4".
 
  • #6
rude man said:
Change "3/4' TO "1/4".

Since you want to spill half of the mercury, in the final state, Hg's height will be reduced by half, so it is h/2. Also, the initial height is h...
 
  • #7
... and V1 = A h , V2 = 3 A h / 2
 
  • #8
cosmic dust said:
Since you want to spill half of the mercury, in the final state, Hg's height will be reduced by half, so it is h/2. Also, the initial height is h...

My correction assumes h = height of the entire vessel. That is how the problem is stated.
So the initial Hg height is h/2 and it ends up h/4.
 
  • #9
Then, the expression becomes:

[itex](P_{0} + \rho_{Hg}gh/2) * Ah/T_{1} = (P_{0} + \rho_{Hg}gh/4) * 3Ah/2 / T_{2}[/itex]
 
  • #10
NasuSama said:
Then, the expression becomes:

[itex](P_{0} + \rho_{Hg}gh/2) * Ah/T_{1} = (P_{0} + \rho_{Hg}gh/4) * 3Ah/2 / T_{2}[/itex]

That is correct.

EDIT: sorry, I was wrong here. V1 = Ah/2 and V2 = 3Ah/4 if h is the height of the whole cylinder.
 
Last edited:
  • #11
Now, if you want an even harder problem - what is the heat Q added? :eek:
 
  • #12
NasuSama said:
Then, the expression becomes:

[itex](P_{0} + \rho_{Hg}gh/2) * Ah/T_{1} = (P_{0} + \rho_{Hg}gh/4) * 3Ah/2 / T_{2}[/itex]

It appears that you are using h for the entire height of the cylinder. But then, I don't think the final volume is expressed correctly in terms of h.
 
  • #13
TSny said:
It appears that you are using h for the entire height of the cylinder. But then, I don't think the final volume is expressed correctly in terms of h.

Why is that? Is it because there will be half the volume of the mercury? But someone just said that it's right. I don't understand why.. :\
 
  • #14
NasuSama said:
Then, the expression becomes:

[itex](P_{0} + \rho_{Hg}gh/2) * Ah/T_{1} = (P_{0} + \rho_{Hg}gh/4) * 3Ah/2 / T_{2}[/itex]

There's confusion because some here are using h for the initial height of the mercury while others are using h for the entire height of the cylinder. Either way is fine, but once you decide on the definition of h, then you have to stick with it.

On the left side of the equation above, the initial height of the mercury is written as h/2. So, that means h is the height of the entire cylinder. But also on the left you have the initial volume of the gas as Ah. But that means you are now taking h to be half the height of the entire cylinder, so there's an inconsistency in notation. Same for the right hand side.
 
  • #15
TSny said:
It appears that you are using h for the entire height of the cylinder. But then, I don't think the final volume is expressed correctly in terms of h.

Right. I made a mistake earlier - see my edited post above.

V1 = Ah/2 and V2 = 3Ah/4 if h is height of entire cylinder.
 
Last edited:
  • #16
TSny said:
There's confusion because some here are using h for the initial height of the mercury while others are using h for the entire height of the cylinder. Either way is fine, but once you decide on the definition of h, then you have to stick with it.

On the left side of the equation above, the initial height of the mercury is written as h/2. So, that means h is the height of the entire cylinder. But also on the left you have the initial volume of the gas as Ah. But that means you are now taking h to be half the height of the entire cylinder, so there's an inconsistency in notation. Same for the right hand side.

This is exactly right. The OP's two opening equations are actually mutually contradictory in this sense.

I picked h to be per the problem definition (OK, they used H insead of h) and corrected his second equation accordingly.
 
  • #17
rude man said:
This is exactly right. The OP's two opening equations are actually mutually contradictory in this sense.

I picked h to be per the problem definition (OK, they used H insead of h) and corrected his second equation accordingly.

Actually, he is right...
 

FAQ: Very hard ideal gas law problem

What is the ideal gas law and how does it relate to very hard ideal gas problems?

The ideal gas law is a mathematical equation that describes the relationship between the pressure, volume, temperature, and number of moles of a gas. In very hard ideal gas problems, this law is applied to gases that behave ideally, meaning they follow the assumptions of the law, such as having negligible intermolecular forces and occupying a large volume compared to the size of the molecules.

How is the ideal gas law equation written and what are its variables?

The ideal gas law equation is written as PV = nRT, where P is the pressure of the gas, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin. These variables represent the key factors that influence the behavior of gases.

What is the ideal gas constant and what are its units?

The ideal gas constant, represented by the symbol R, is a proportionality constant in the ideal gas law equation. It has a value of 8.314 J/mol·K, and its units are determined by the units of the other variables in the equation. For example, if pressure is measured in atmospheres, volume in liters, and temperature in Kelvin, then the units of R would be L·atm/mol·K.

How can the ideal gas law be used to solve very hard ideal gas problems?

In order to solve very hard ideal gas problems, the ideal gas law equation can be rearranged to solve for the desired variable. This is done by isolating the variable on one side of the equation and plugging in the known values for the other variables. It is important to make sure that all units are consistent and converted to the correct units before solving the equation.

What are some common challenges when solving very hard ideal gas problems?

Some common challenges when solving very hard ideal gas problems include dealing with non-ideal behavior of gases, such as when they deviate from the assumptions of the ideal gas law, and ensuring that all units are consistent and in the correct units. In addition, some problems may require the use of multiple equations or conversions between units, which may add complexity to the problem.

Similar threads

Replies
5
Views
1K
Replies
11
Views
639
Replies
2
Views
1K
Replies
8
Views
2K
Replies
3
Views
666
Replies
2
Views
2K
Back
Top