- #1
exmachina
- 44
- 0
Try drawing this mentally:
Start with a circle of radius r, draw n number of points spaced evenly on the circle. at each point on the circle draw another circle of radius r, once again with n number of points. What sort of a picture would one get repeating this process a million times, and as n tends to infinity and r tends to some very small non-zero quantity?
I was told that: for n = 1, 2, 3, 4, or 6, it looks like a bunch of lines connected together at points in a regular way, like an infinite graph. For any other n, it just fills the whole plane.
But I still can't visualize it. This is a preliminary to an extension of non-flat surfaces (ie. repeat the process only this time on a riemannian manifold)
Start with a circle of radius r, draw n number of points spaced evenly on the circle. at each point on the circle draw another circle of radius r, once again with n number of points. What sort of a picture would one get repeating this process a million times, and as n tends to infinity and r tends to some very small non-zero quantity?
I was told that: for n = 1, 2, 3, 4, or 6, it looks like a bunch of lines connected together at points in a regular way, like an infinite graph. For any other n, it just fills the whole plane.
But I still can't visualize it. This is a preliminary to an extension of non-flat surfaces (ie. repeat the process only this time on a riemannian manifold)
Last edited: