- #1
songoku
- 2,367
- 348
- Homework Statement
- Let R be the part of the xy-plane above the x-axis and below the parabola ##y=1-x^2##. Find
the volume between R and the surface ##z=x^2 \sqrt{1-y}##
- Relevant Equations
- Double Integral
Integration in the order of dy then dx:
$$\int_{-1}^{1} \int_{0}^{1-x^2} x^2 \sqrt{1-y} ~dy~dx$$
$$=\int_{-1}^{1} -x^2 \left[\frac{2}{3} (1-y)^{\frac{3}{2}}\right]_{0}^{1-x^2}dx$$
$$=\int_{-1}^{1}\left(-\frac{2}{3}x^5 + \frac{2}{3} x^2\right)dx$$
$$=\left. -\frac{1}{9} x^6 + \frac{2}{9} x^3\right|_{-1}^{1}$$
$$=\frac{4}{9}$$
Integration in the order of dx then dy:
$$\int_{0}^{1} \int_{-\sqrt{1-y}}^{\sqrt{1-y}}x^2\sqrt{1-y}~dx~dy$$
$$=2\int_{0}^{1} \int_{0}^{\sqrt{1-y}}x^2\sqrt{1-y}~dx~dy$$
$$=2\int_{0}^{1} \sqrt{1-y} \left[\frac{1}{3} x^3\right]_{0}^{\sqrt{1-y}}dy$$
$$=\frac{2}{3}\int_{0}^{1}(1-y)^2 dy$$
$$=-\frac{2}{9} \left. (1-y)^3\right|_{0}^{1}$$
$$=\frac{2}{9}$$
I got two different results. Where is my mistake?
Thanks
$$\int_{-1}^{1} \int_{0}^{1-x^2} x^2 \sqrt{1-y} ~dy~dx$$
$$=\int_{-1}^{1} -x^2 \left[\frac{2}{3} (1-y)^{\frac{3}{2}}\right]_{0}^{1-x^2}dx$$
$$=\int_{-1}^{1}\left(-\frac{2}{3}x^5 + \frac{2}{3} x^2\right)dx$$
$$=\left. -\frac{1}{9} x^6 + \frac{2}{9} x^3\right|_{-1}^{1}$$
$$=\frac{4}{9}$$
Integration in the order of dx then dy:
$$\int_{0}^{1} \int_{-\sqrt{1-y}}^{\sqrt{1-y}}x^2\sqrt{1-y}~dx~dy$$
$$=2\int_{0}^{1} \int_{0}^{\sqrt{1-y}}x^2\sqrt{1-y}~dx~dy$$
$$=2\int_{0}^{1} \sqrt{1-y} \left[\frac{1}{3} x^3\right]_{0}^{\sqrt{1-y}}dy$$
$$=\frac{2}{3}\int_{0}^{1}(1-y)^2 dy$$
$$=-\frac{2}{9} \left. (1-y)^3\right|_{0}^{1}$$
$$=\frac{2}{9}$$
I got two different results. Where is my mistake?
Thanks