- #1
Inertigratus
- 128
- 0
Homework Statement
Find the volume between z = x2 + y2 and z = 2 - (x2 + y2).
Homework Equations
The Attempt at a Solution
if r2 = x2 + y2
then the lower part of the volume is defined by:
r2 [itex]\leq[/itex] z [itex]\leq[/itex] 2 - r2
and: 0 [itex]\leq[/itex] r [itex]\leq[/itex] 1
the upper part by:
2 - r2 [itex]\leq[/itex] z [itex]\leq[/itex] r2
and: 1 [itex]\leq[/itex] r [itex]\leq[/itex] [itex]\sqrt{2}[/itex]
[itex]\int\int\int[/itex]1 dxdydz, after switching to polar coordinates I get
[itex]\int\int\int[/itex]r drd[itex]\Theta[/itex]dz
Theta varies from 0 to 2 pi. That leaves me with taking the integral with respect to r and z.
I do it for z first, then finally for r. Then add the two volumes. But it's wrong.
Any ideas?