- #1
skate_nerd
- 176
- 0
This problem is really making my head spin. I'm in university calculus II and my teacher loves giving us extra homework that is supposed to really challenge us. This is problem 1 of 5.
"Let 0<r<R and x2+(y-R)2=r2 be the circle centered at (0,R) of radius r. Revolving the disk enclosed by that circle about the x-axis generates a torus. Using the washer method obtain the volume of that torus."
So just a disclaimer, I have NO intention of cheating on this. I'm in the class to learn. I have gotten so far on this problem and now I'm stuck which is very frustrating since figuring out everything before now took a while. If anybody could just let me know if I did something wrong or not that would be awesome.
So far, I made a graph, and made an infinitesimally small slice through the torus, which I needed to find the area of. To do this I knew I needed the equation solved for y, so I did that and got:
y=R+(root(r2-x2)) for the top half of the circle and y=R-(root(r2-x2)) for the bottom half. I used the top half as the outer radius of the washer and the bottom half as the inner radius. From this I got an integral:
pi ( int (R+(root(r2-x2)))^2-(R-(root(r2-x2)))^2 ) dx
this ends up being:
4piR ( int (root(r2-x2)) ) dx
and from there I tried using a couple different u-substitutions and nothing worked and I got frustrated, then came here. Any help would be appreciated! Thanks in advance.
"Let 0<r<R and x2+(y-R)2=r2 be the circle centered at (0,R) of radius r. Revolving the disk enclosed by that circle about the x-axis generates a torus. Using the washer method obtain the volume of that torus."
So just a disclaimer, I have NO intention of cheating on this. I'm in the class to learn. I have gotten so far on this problem and now I'm stuck which is very frustrating since figuring out everything before now took a while. If anybody could just let me know if I did something wrong or not that would be awesome.
So far, I made a graph, and made an infinitesimally small slice through the torus, which I needed to find the area of. To do this I knew I needed the equation solved for y, so I did that and got:
y=R+(root(r2-x2)) for the top half of the circle and y=R-(root(r2-x2)) for the bottom half. I used the top half as the outer radius of the washer and the bottom half as the inner radius. From this I got an integral:
pi ( int (R+(root(r2-x2)))^2-(R-(root(r2-x2)))^2 ) dx
this ends up being:
4piR ( int (root(r2-x2)) ) dx
and from there I tried using a couple different u-substitutions and nothing worked and I got frustrated, then came here. Any help would be appreciated! Thanks in advance.