- #1
MountEvariste
- 87
- 0
Let $E$ be the set of all real $4$-tuples $(a, b, c, d)$ such that if $x, y \in \mathbb{ R}$, then:
$(ax+by)^2+(cx+dy)^2 \le x^2+y^2$.
Find the volume of $E$ in $\mathbb{R}^4$.
$(ax+by)^2+(cx+dy)^2 \le x^2+y^2$.
Find the volume of $E$ in $\mathbb{R}^4$.
Source: AMM.