Volume of rotation - my answer seems off a bit

lucidlobster
Messages
5
Reaction score
0
Find the area of the given function, rotated about the y axis

The Area below the line y=2 and above y=sin(x) from 0-\pi

I did this rotated around the X AXIS no problem,

I found the area of the disk to be \pi(4-sin^{2}(x))

The volume around the X AXIS to be\frac{7\pi^{2}}{2}



The Attempt at a Solution



For the Y axis I have used this:\int^{\pi}_{0} 2\pi xf(x)dx
Plugging in:

\int^{\pi}_{0} 2\pi x(2-sin(x))dx

I solved this to be 2\pi^{3}-2\pi^{2}


Does this look right?
 
Physics news on Phys.org
Really? That is awesome!

Any second opinions?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top