MHB Volume of Solid of Revolution about Oblique Axis - Kyle's Question

AI Thread Summary
The discussion focuses on calculating the volume of a solid formed by revolving the region bounded by the graphs of y=x and y=x^2 about the line y=x. The provided solution utilizes a specific formula for solids of revolution about an oblique axis, leading to the determination of the volume as pi/(30sqrt(2)). The integration process involves finding the limits of integration and expanding the integrand. The final calculation confirms the volume matches the book's answer. This method illustrates the application of calculus in determining volumes of solids of revolution.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the volume of the solid formed by revolving about y=x?

Find the volume of the solid formed by revolving the region bounded by the graphs of y=x and y=x^2 about the line y=x

Additional Details:

The book's given answer is pi/(30sqrt(2))

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Kyle,

Please see http://mathhelpboards.com/math-notes-49/solid-revolution-about-oblique-axis-rotation-6683.html for the development of the general formula:

$$V=\frac{\pi}{\left(m^2+1 \right)^{\frac{3}{2}}}\int_{x_i}^{x_f} \left(f(x)-mx-b \right)^2\left(1+mf'(x) \right)\,dx$$

We first find $x_i$ and $x_f$:

$$x^2=x$$

$$x(x-1)=0$$

Hence:

$x_i=0,\,x_f=1$

We are given:

$m=1,\,b=0,\,f(x)=x^2\implies f'(x)=2x$

Hence:

$$V=\frac{\pi}{2\sqrt{2}}\int_{0}^{1} \left(x^2-x \right)^2(1+2x)\,dx$$

Expanding the integrand, we have:

$$V=\frac{\pi}{2\sqrt{2}}\int_{0}^{1} 2x^5-3x^4+x^2 \,dx$$

Applying the FTOC, we find:

$$V=\frac{\pi}{2\sqrt{2}}\left[\frac{1}{3}x^6-\frac{3}{5}x^5+\frac{1}{3}x^3 \right]_{0}^{1}$$

$$V=\frac{\pi}{2\sqrt{2}}\left(\frac{1}{3}-\frac{3}{5}+\frac{1}{3} \right)=\frac{\pi}{2\sqrt{2}}\left(\frac{1}{15} \right)=\frac{\pi}{30\sqrt{2}}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top