MHB Volume of the solid obtained by rotating R around the line y=x

AI Thread Summary
The discussion focuses on calculating the volume of the solid formed by rotating the region defined by 0 ≤ x ≤ 1 and 3^x − x − 1 ≤ y ≤ x around the line y = x. The transformation to new coordinates u and v simplifies the integration process, allowing the volume to be expressed as an integral in terms of u. The volume is computed through a series of integrals, including integration by parts for more complex terms. The final volume is expressed as V = (π/√2)(13/3 - 12/ln3 + 8/(ln3)^2), with a numerical approximation of V ≈ 0.086, confirming the calculation's accuracy. This method demonstrates the effectiveness of coordinate transformation in solving volume problems in calculus.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $R$ be the region $\left\{(x, y) : 0 \leq x \leq 1, 3^x − x − 1 \leq y \leq x\right\}$.

Find the volume of the solid obtained by rotating $R$ around the line $y = x$.
 
Mathematics news on Phys.org
lfdahl said:
Let $R$ be the region $\left\{(x, y) : 0 \leq x \leq 1, 3^x − x − 1 \leq y \leq x\right\}$.

Find the volume of the solid obtained by rotating $R$ around the line $y = x$.
[sp]Rotate the axes through $45^\circ$ by introducing new coordinates $u = \dfrac{x+y}{\sqrt2}$, $v = \dfrac{y-x}{\sqrt2}$. The line $y=x$ then becomes the $u$-axis.

If $y = 3^x − x − 1$ then $x+y+1 = 3^x$, and so $\ln(x+y+1) = x\ln3$. In terms of $u$ and $v$ that becomes $\ln(\sqrt2u + 1) = \dfrac{\ln3}{\sqrt2}(u-v)$. Solve that for $v$ to get $$v = u - \frac{\sqrt2}{\ln3}\ln(\sqrt2u + 1).$$

The volume of the solid obtained by rotating $R$ around the $u$-axis is then $$V = \pi\!\!\int_0^{\sqrt2}v^2\,du = \pi\!\!\int_0^{\sqrt2}\left(u - \frac{\sqrt2}{\ln3}\ln(\sqrt2u + 1)\right)^{\!\!2}du.$$ Substitute $t = \sqrt2u+1$: $$V = \pi\!\!\int_1^3\left(\frac{t-1}{\sqrt2} - \frac{\sqrt2}{\ln3}\ln t\right)^{\!\!2}\frac{dt}{\sqrt2} = \frac\pi{\sqrt2}\int_1^3\left(\frac12(t-1)^2 - \frac2{\ln3}(t-1)\ln t + \frac2{(\ln3)^2}(\ln t)^2\right)dt.$$

Dealing with the three terms in that last integral, the first one is easy, the other two require integration by parts: $$\int_1^3 (t-1)^2dt = \Bigl[\frac13(t-1)^3\Bigr]_1^3 = \frac83;$$ $$ \int_1^3 (t-1)\ln t\,dt = \Bigl[\frac12(t-1)^2\ln t \Bigr]_1^3 - \int_1^3 \frac12(t^2 - 2t + 1)\frac1t\,dt = 2\ln3 - \Bigl[\frac14t^2 - t + \frac12\ln t\Bigr]_1^3 = 2\ln 3 - \Bigl(-\frac34 + \frac12\ln3 + \frac34\Bigr) = \frac32\ln3; $$ $$ \int_1^3(\ln t)^2dt = \Bigl[t(\ln t)^2 \Bigr]_1^3 - \int_1^3t\frac{2\ln t}tdt = 3(\ln3)^2 - 2\Bigl[t\ln t - t\Bigr]_1^3 = 3(\ln3)^2 - 6\ln3 + 4.$$

Put those results into the integral for $V$ to get $$V = \frac\pi{\sqrt2}\left(\frac43 - 3 + 6 - \frac{12}{\ln3} + \frac8{(\ln3)^2}\right) = \frac\pi{\sqrt2}\left(\frac{13}3 - \frac{12}{\ln3} + \frac8{(\ln3)^2}\right).$$

Numerically, that gives $V\approx 0.086$, which looks about the right order of magnitude from the appearance of a graph of the function.
[/sp]
 
Thankyou, Opalg, for a nice and thorough solution! (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top