- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{Whitman \ 8.7.23}$
\begin{align}
\displaystyle
I&=\int \sin^3(t) \cos^2(t) \ d{t} \\
u&=\cos(t) \therefore du=-\sin(t) \, dt \\
\textit{substitute $\cos(t)=u$}&\\
I_u&=-\int (1-u^2) u^2 \, du=-\int(u^2-u^4) \, dt\\
\textit{integrate}&\\
&=-\left[\frac{u^3}{3}-\frac{u^5}{5}\right]
=\left[\frac{u^5}{5}-\frac{u^3}{3}\right]\\
\textit{back substitute $u=\cos(t)$}&\\
I&= \frac{\cos^5(t)}{5}-\frac{\cos^3(t)}{3}+C
\end{align}
$\textit{think this is correct but suggestions??}$
$\textit{also how is text like "substitute" left justifed withinn an align?}$
\begin{align}
\displaystyle
I&=\int \sin^3(t) \cos^2(t) \ d{t} \\
u&=\cos(t) \therefore du=-\sin(t) \, dt \\
\textit{substitute $\cos(t)=u$}&\\
I_u&=-\int (1-u^2) u^2 \, du=-\int(u^2-u^4) \, dt\\
\textit{integrate}&\\
&=-\left[\frac{u^3}{3}-\frac{u^5}{5}\right]
=\left[\frac{u^5}{5}-\frac{u^3}{3}\right]\\
\textit{back substitute $u=\cos(t)$}&\\
I&= \frac{\cos^5(t)}{5}-\frac{\cos^3(t)}{3}+C
\end{align}
$\textit{think this is correct but suggestions??}$
$\textit{also how is text like "substitute" left justifed withinn an align?}$