- #1
karush
Gold Member
MHB
- 3,269
- 5
w8.3.11 nmh{1000}
$\displaystyle I= \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
Substitutions $x=\sin^2 \left({u}\right)
\quad dx=2\sin\left({u}\right) \cos\left({u}\right) \ du
\quad u=\arcsin\left({\sqrt{x}}\right)$
This evaluates to $I=2\int\sin^2 \left({u}\right) \ du
= {u}-\sin\left({u}\right) \cos\left({u}\right)$
Back substittute u.. $I=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
$\displaystyle I= \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
Substitutions $x=\sin^2 \left({u}\right)
\quad dx=2\sin\left({u}\right) \cos\left({u}\right) \ du
\quad u=\arcsin\left({\sqrt{x}}\right)$
This evaluates to $I=2\int\sin^2 \left({u}\right) \ du
= {u}-\sin\left({u}\right) \cos\left({u}\right)$
Back substittute u.. $I=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
Last edited: