-w8.7.28 integral rational expression

In summary, the conversation is about solving the integral $\displaystyle \int\frac{t+1}{{t}^{2}+t-1}\ dt$. The book provides the answer as $\displaystyle\frac{5+\sqrt{5}}{10}\ln\left({2t+1-\sqrt{5}}\right)+\frac{5-\sqrt{5}}{10}\ln\left({2t+1+\sqrt{5}}\right)+C$, but the method of obtaining it involves expanding the integral into smaller integrals and using partial fraction decomposition. As an alternative, a simpler method is suggested by using substitutions and solving the integrals separately.
  • #1
karush
Gold Member
MHB
3,269
5
nmh{1000}
$\tiny{\text {Whitman 8.7.28 integral rational expression}} $
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt$$
$\text{book answer}$
$$\displaystyle\frac{5+\sqrt{5}}{10}
\ln\left({2t+1-\sqrt{5}}\right)
+\frac{5-\sqrt{5}}{10}
\ln\left({2t+1+\sqrt{5}}\right)+C$$

$\text{expansion}$
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt
=\int\frac{t}{{t}^{2}+t-1}\ dt
+\int\frac{1}{{t}^{2}+t-1}\ dt $$

Not sure how to approach this since it won't factor
 
Last edited:
Physics news on Phys.org
  • #2
Well, the denominator of the integrand doesn't factor with rational roots being the result, but you can get the roots using the quadratic formula and then factor that way...you will find:

\(\displaystyle t^2+t-1=\left(t+\frac{1+\sqrt{5}}{2}\right)\left(t+\frac{1-\sqrt{5}}{2}\right)=\frac{1}{4}(2t+1+\sqrt{5})(2t+1-\sqrt{5})\)
 
  • #3
karush said:
so then if
$$\displaystyle
t^2+t-1
=\left(t+\frac{1+\sqrt{5}}{2}\right)\left(t+\frac{1-\sqrt{5}}{2}\right)
=\frac{1}{4}(2t+1+\sqrt{5})(2t+1-\sqrt{5})$$
we can express the integral as
$$\displaystyle
I
=\frac{1}{4}\left[
\int\frac{t}{2t+1+\sqrt{5}}\ dt
+\int\frac{1}{2t+1-\sqrt{5}}\ dt \right]$$

No, check your partial fraction decomposition...you should get:

\(\displaystyle \frac{t+1}{t^2+t-1}=\frac{1}{\sqrt{5}}\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)\)
 
  • #4
$\text{so if}$
$$\displaystyle \frac{t+1}{t^2+t-1}
=\frac{1}{\sqrt{5}}
\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}
+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
$\text{then}$
$$I=\frac{1}{\sqrt{5}}
\left[
\sqrt{5}-1 \int \frac{1}{2t+\sqrt{5}+1} \ dt
+\sqrt{5}+1\int\frac{1}{2t-\sqrt{5}-1} \ dt
\right]$$
$\text{ integrating}$
$$I=\frac{1}{\sqrt{5}}
\left[
(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))
+(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})
\right]+C$$
 
Last edited:
  • #5
karush said:
$\text{so if}$
$$\displaystyle \frac{t+1}{t^2+t-1}
=\frac{1}{\sqrt{5}}
\left(\frac{\sqrt{5}-1}{2t+\sqrt{5}+1}
+\frac{\sqrt{5}+1}{2t-\sqrt{5}+1}\right)$$
$\text{then}$
$$I=\frac{1}{\sqrt{5}}
\left[
\sqrt{5}-1 \int \frac{1}{2t+\sqrt{5}+1} \ dt
+\sqrt{5}+1\int\frac{1}{2t-\sqrt{5}-1} \ dt
\right]$$
$\text{ integrating}$
$$I=\frac{1}{\sqrt{5}}
\left[
(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))
+(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})
\right]$$

That's not quite right...what is:

\(\displaystyle I=\int\frac{a}{2u+b}\,du\)?
 
  • #6
MarkFL said:
That's not quite right...what is:

\(\displaystyle I=\int\frac{a}{2u+b}\,du\)?
$$
\displaystyle I=\int\frac{a}{2u+b}\,du
=\frac{a\ln\left({\left| 2u+b \right|}\right)}{2} +C$$

$\displaystyle
I=\frac{1}{\sqrt{5}}
\left[\frac
{(\sqrt{5}-1)(\ln({2t+\sqrt{5}+1}))}{2}

+\frac{(\sqrt{5}+1)\ln({2t-\sqrt{5}-1})}{2} \right]+C$

TA DA

$$\displaystyle
I=
+\left(\frac{5-\sqrt{5}}{10}\right)
\ln\left({2t+1+\sqrt{5}}\right)
+\left(\frac{5+\sqrt{5}}{10}\right)
\ln\left({2t+1-\sqrt{5}}\right) +C$$
 
Last edited:
  • #7
karush said:
$\tiny{\text {Whitman 8.7.28 integral rational expression}} $
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt$$
$\text{book answer}$
$$\displaystyle\frac{5+\sqrt{5}}{10}
\ln\left({2t+1-\sqrt{5}}\right)
+\frac{5-\sqrt{5}}{10}
\ln\left({2t+1+\sqrt{5}}\right)+C$$

$\text{expansion}$
$$\displaystyle
\int\frac{t+1}{{t}^{2}+t-1}\ dt
=\int\frac{t}{{t}^{2}+t-1}\ dt
+\int\frac{1}{{t}^{2}+t-1}\ dt $$

Not sure how to approach this since it won't factor

An easier method perhaps?

$\displaystyle \begin{align*} \int{\frac{t + 1}{t^2 + t - 1}\,\mathrm{d}t} &= \frac{1}{2} \int{ \frac{2\,t + 2}{t^2 + t - 1}\,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2}\int{ \frac{1}{t^2 + t - 1} \,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2} \int{ \frac{1}{ t^2 + t + \left( \frac{1}{2} \right) ^2 - \left( \frac{1}{2} \right) ^2 - 1 } \,\mathrm{d}t } \\ &= \frac{1}{2} \int{ \frac{2\,t + 1}{t^2 + t - 1} \,\mathrm{d}t } + \frac{1}{2} \int{ \frac{1}{\left( t + \frac{1}{2} \right) ^2 - \frac{5}{4}}\,\mathrm{d}t } \end{align*}$

The first integral can be solved with a substitution $\displaystyle \begin{align*} u = t^2 + t - 1 \implies \mathrm{d}u = \left( 2\,t + 1 \right) \,\mathrm{d}t \end{align*}$ and the second can be solved with a substitution $\displaystyle \begin{align*} t + \frac{1}{2} = \frac{\sqrt{5}}{2}\,\cosh{(x)} \implies \mathrm{d}t = \frac{\sqrt{5}}{2}\,\sinh{(x)}\,\mathrm{d}x \end{align*}$.
 
  • #8
https://drive.google.com/file/d/1iXnEH2ZmCMbPZeofOPsIKjGW2MdzlvEw/view?usp=sharing
 

FAQ: -w8.7.28 integral rational expression

1. What is a rational expression?

A rational expression is an algebraic expression that is written as a fraction of two polynomials. It can also be called a rational function.

2. What is an integral rational expression?

An integral rational expression is a rational expression that can be integrated using standard integration techniques, such as substitution or partial fractions.

3. How do you integrate a rational expression?

To integrate a rational expression, you can use substitution or partial fractions. First, identify the highest power of the variable in the denominator and use substitution to simplify the expression. If the highest power is quadratic or higher, you can use partial fractions to break it down into smaller, more manageable fractions. Then, integrate each term separately.

4. What are some common mistakes when integrating rational expressions?

One common mistake is forgetting to include the constant of integration. Another mistake is not simplifying the expression before integrating, which can lead to incorrect answers. It is also important to be careful with the signs when using partial fractions.

5. Can all rational expressions be integrated?

No, not all rational expressions can be integrated using standard integration techniques. Some may require more advanced methods, such as integration by parts or trigonometric substitution. Others may not have an antiderivative that can be expressed in terms of elementary functions.

Similar threads

Replies
6
Views
657
Replies
2
Views
2K
Replies
2
Views
1K
Replies
6
Views
2K
Replies
12
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
Back
Top