- #1
stanley650586031
- 8
- 0
[moderator note: super size font formats removed.]
When a water jet strikes a plate (3m plate) at an angle (like 60 degrees), velocity of water decreases as it travels downstream. I know the major contributor that slows down water is probably wall frictional force but how to quantify this phenomena?
I have been thinking this question for over a week but still couldn’t find the appropriate scientific method to quantify this phenomena.
My first question will be how to correctly calculate the shear stress for a case like water striking a 2m long plate at 60 degrees angle. I think this is a transient analysis that the water jet comes out of the nozzle, strikes the plate and then travels downstream until it reaches the end of the plate and leaves it. However, the shear stress at wall is constantly changing as water moves downstream because velocity gradient is also changing constantly due to growing boundary layer.
Also, I know the viscous force of a liquid is dynamic viscosity x velocity gradient (du/dy) for a 2-D laminar flow, and I did the flow simulation to obtain the velocity gradients at wall for a couple of locations from the origin (0.2m, 0.4m, 0.6m….. etc.) and then calculated the shear stress for these locations. However, for transient case like this, how should I use these velocity gradients to calculate shear stresses? Do I have to obtain all the velocity gradients along the plate and then derive the shear stress for every location accordingly since this is a transient analysis?
My second question will be how to correctly calculate calculate wall frictional wall forces for the same case. I know as water moves downstream the plate, its velocity decreases slowly due to frictional forces between wall and water. However, the velocity gradient is changing all the time which changes frictional forces as water moves downstream. Also, what is correct surface area to use to calculate frictional forces for each location for each time moment?
My third question would be would surface roughness of the plate contribute to slowing down the velocity of water as it travels. Intuitively thinking, I think it would but I couldn’t find the relationship between the surface roughness and water speed. For a solid object, it is a lot easier find the relationship but for a liquid I have no idea on that. Would surface roughness contribute to the other kind of frictional forces for a liquid? or it wouldn’t ?
In a nutshell, I just want to find like correlation or a couple of equations that approximate how water slows down as it travels downstream after coming out the nozzle.
Any feedback, comments and thoughts are really really appreciated
Thank you
Stanley
When a water jet strikes a plate (3m plate) at an angle (like 60 degrees), velocity of water decreases as it travels downstream. I know the major contributor that slows down water is probably wall frictional force but how to quantify this phenomena?
I have been thinking this question for over a week but still couldn’t find the appropriate scientific method to quantify this phenomena.
My first question will be how to correctly calculate the shear stress for a case like water striking a 2m long plate at 60 degrees angle. I think this is a transient analysis that the water jet comes out of the nozzle, strikes the plate and then travels downstream until it reaches the end of the plate and leaves it. However, the shear stress at wall is constantly changing as water moves downstream because velocity gradient is also changing constantly due to growing boundary layer.
Also, I know the viscous force of a liquid is dynamic viscosity x velocity gradient (du/dy) for a 2-D laminar flow, and I did the flow simulation to obtain the velocity gradients at wall for a couple of locations from the origin (0.2m, 0.4m, 0.6m….. etc.) and then calculated the shear stress for these locations. However, for transient case like this, how should I use these velocity gradients to calculate shear stresses? Do I have to obtain all the velocity gradients along the plate and then derive the shear stress for every location accordingly since this is a transient analysis?
My second question will be how to correctly calculate calculate wall frictional wall forces for the same case. I know as water moves downstream the plate, its velocity decreases slowly due to frictional forces between wall and water. However, the velocity gradient is changing all the time which changes frictional forces as water moves downstream. Also, what is correct surface area to use to calculate frictional forces for each location for each time moment?
My third question would be would surface roughness of the plate contribute to slowing down the velocity of water as it travels. Intuitively thinking, I think it would but I couldn’t find the relationship between the surface roughness and water speed. For a solid object, it is a lot easier find the relationship but for a liquid I have no idea on that. Would surface roughness contribute to the other kind of frictional forces for a liquid? or it wouldn’t ?
In a nutshell, I just want to find like correlation or a couple of equations that approximate how water slows down as it travels downstream after coming out the nozzle.
Any feedback, comments and thoughts are really really appreciated
Thank you
Stanley
Last edited by a moderator: