Wave Function: Normalization Constant

In summary: Almost. ##Re(e^{i\theta}) = \cos \theta##, and ##Im(e^{i\theta}) = \sin \theta##.Ok. Thank you George.
  • #36
Ah there's still the ##dx## left:

##\frac{a}{2}+\frac{a}{2}=a##, therefore ##A=\frac{1}{a}##
 
Physics news on Phys.org
  • #37
Not quite. There is an A from psi, and another A from \bar{psi}.
 
  • #38
##A=\frac{1}{\sqrt{a}}##?
 
  • #39
Looks okay.
 
  • Like
Likes teme92
  • #40
Brilliant, and regarding the sketch part?
 
  • #41
What are ##Re(e^{-i\theta})## and ##Im(e^{-i\theta})##?
 
  • #42
##Re=\theta## and ##Im=-i##?
 
  • #43
No. Recall how ##e^{i\theta}## was expressed earlier in the thread.
 
  • #44
Oh I get you. ##Re=cos\theta## and ##Im=isin\theta##?
 
Back
Top